

Терморегулятор

Руководство по эксплуатации

111024, Москва 2 я ул. Энтузиастов, д. 5, корп. 5 Тел.: (495) 221 60 64 (многоканальный) Факс: (495) 728 41 45 www.owen.ru Отдел сбыта: sales@owen.ru Группа тех. поддержки: support@owen.ru

1 Назначение, функции, область применения и достоинства

ТРМ500 простой и надежный прибор для измерения и регулирования температуры который позволяет осуществлять следующие функции:

- измерение температуры;
- регулирование по ПИД-закону путем импульсного управления или по двухпозиционному закону;
- автонастройка ПИД-регулятора на установленном объекте;
- ручное управление выходной мощностью регулятора (далее РРУ);
- определение аварийной ситуации при выходе температуры за заданные границы;
- дистанционное управление запуском и остановкой регулирования.

1.1 Область применения

- основная - электрические печи;

- вспомогательная - отопительные котлы, сушильные шкафы, экструдеры термопластавтоматы и т.д.

1.2 Достоинства

TPM500 - многофункциональный On/Off и ПИД-регулятор с автонастройкой для печами с возможностью коммутации до 30 А без промежуточных пускателей, с функциями ручного управления мощностью на выходе, дистанционного пуска регулятора, дистанционной смены уставки и дополнительным выходом для

Прибор оснащен крупным и легкочитаемым цифровым индикатором для отображения измеренной величины и дополнительной индикацией ее отклонения от уставки.

Прибор прост в настройке за счет отдельного меню с вынесенными основными параметрами.

ТРМ500 может работать с любыми термодатчиками, при любой схеме их подключения (2-х, 3-х и 4-х проводная).

Также ТРМ500 оснащен дублированным выходом для регулирования: пользователь имеет возможность программно выбрать тип ВУ: электромагнитное реле и выход для управления твердотельными реле (далее ТТР).

Обозначение при заказе:

ТРМ500-Щ2.Х

5A - э/м реле 5 А, один индикатор; **30A** - э/м реле 30 A, два индикатора

2 Технические характеристики и условия эксплуатации

2 технические характеристики и условия эксплуатации				
Название параметра	Значение			
Напряжение питания	96 264 В переменного тока			
	(U _{Hom} 120/230 B)			
Частота напряжения питания	47 63 Гц			
Потребляемая мощность	не более 5 Bт (cos (ф)>0,6)			
Измерительный вход 1				
Типы входных датчиков	см. таблицу 6.1			
Предел основной допускаемой	±0,5 %			
приведенной погрешности	– при использовании TC ±0,25 %			
Время измерения, сек	3x проводной схема TC - 0,26,			
	2- и 4х проводной схема ТС, ТП - 0,16			
Дог	олнительный вход 2			
Сопротивление внешнего ключа:	— в состоянии «замкнуто» не более 70 Ом;			
·	— в состоянии «разомкнуто» более 1 кОм			
Bı	ыходные устройства			
Количество выходов	3 (один дублирующий)			
Выход 1	электромагнитное реле			
	стандарт: 5 A/250 В переменного тока cos (φ)=1,			
	3 А/30 В постоянного тока.			
	опция: 30 A/250 В переменного тока cos (ф)=1,			
	20 А/30 В постоянного тока.			
Выход 2	аналогично Выход 1 (стандарт)			
Выход 3	логический выход под управлением ТТР			
	(выходное напряжение 4 – 5,5 В, выходной ток 25			
	40 mA)			
Корпус щитовой	Щ2			
Габаритные размеры(без	96х48х100 мм			
элементов крепления)				
Степень защиты (со стороны	IP54			
передней панели)				
Масса, не более, кг	0,5			

- температура окружающего воздуха минус 20... +50 °C;
- относительная влажность 30... 80 % при +35 °C воздуха без конденсации влаги;
- атмосферное давление 84 ... 106,7 кПа.

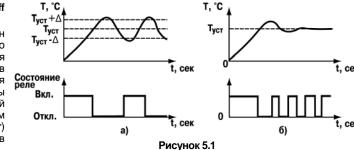
3 Меры безопасности

- 3.1 По способу защиты от поражения электрическим током прибор соответствует классу II по ГОСТ 12 2.007 0-75.
- 3.2 При эксплуатации, техническом обслуживании и поверке необходимо соблюдать требования ГОСТ 12.3.019-80, «Правил эксплуатации электроустановок потребителей» и «Правил охраны труда при эксплуатации электроустановок
- 3.3 Любые подключения к прибору и работы по его техническому обслуживанию производить только при отключенном питании прибора и исполнительных
- 3.4 Не допускается попадание влаги и любых проводящих загрязнений на контакты выходного разъема и внутренние электроэлементы прибора. Запрещается использование прибора в агрессивных средах с содержанием в атмосфере кислот щелочей, масел и т. п.

4 Устройство и принцип работы

Структурная схема прибора изображена на рисунке 4.1

Рисунок 4.1


В процессе работы ТРМ500 производит опрос входного датчика, вычисляя по полученным данным текущее значение гемпературы, отображает ее на цифровом индикаторе и выдает соответствующие сигналы на выходные устройства. Конфигурация ВУ и логики сигнализации описаны в Приложении А.

5 Регулирование температуры

Прибор может регулировать температуру как по двухпозиционному (on/off), так и по ПИД-закону.

5.1 Регулирование температуры по on/off закону (двухпозиционное регулирование) Двухпозиционный закон (или «on/off» регулирования) (рисунок 5.1а) распространенный, используется регулирования измеренной величины

несложных системах, когда не требуется высокой точности поддержания температуры или для сигнализации о выходе контролируемой величины за заданные границы. Режим «Работа» показан на рисунке 5.1, уставка (Туст) и гистерезис (Д) задаются пользователем в режиме настройки.

5.2 Регулирование температуры по ПИД-закону

ПИД-закон (рисунок 5.16) является наиболее совершенным из общепромышленных алгоритмов регулирования. В отличии от алгоритма «on/off», обеспечивает максимальную точность поддержания температуры. Это выполняется при оптимальных настройках трех параметров: пропорционального, интегрального и дифференциального коэффициентов ПИД-регулятора. Данные параметры могут быть заданы вручную, но мы рекомендуем использовать функцию автоматического определения ПИД-коэффициентов - АНР

6 Типы подключаемых датчиков

Таблица 6.1

Обозначение	Тип датчика	Диапазон			
на индикаторе					
Термопары (по ГОСТ Р 8.585-2001)					
EP.L	TXK (L)	−99,9+800 °C			
EP.HR	TXA (K)	−99,9+ 1300 °C			
ŁP.J	TЖК (J)	−99,9+ 1200 °C			
ŁP.n	THH (N)	−99,9+ 1300 °C			
EP.E	TMK(T)	−99,9+400 °C			
ŁP.5	TNN (S)	0+ 1750 °C			
EP.r	TΠΠ (R)	0+ 1750 °C			
£P.b	ТПР(В)	+200+ 1800 °C			
EP.R (TBP(A-1)	0+ 2500 °C			
£P.R2	TBP(A-2)	0+ 1800 °C			
£P.R3	TBP(A-3)	0+ 1800 °C			
Термопреобразователи сопротивления (по ГОСТ 6651-2009)					
c50	TCM (Cu50) α =1,4260	−50+200 °C			
c.50	TCM (50M) α = 1,4280	– 99,9+ 200 °C			
P50	TCΠ (Pt50) α = 1,3850	− 99,9+ 850 °C			
507	TCΠ (50Π) α =1,3910	– 99,9+ 850 °C			
c 100	TCM (Cu100) α =1,4260	−50+200 °C			
c. 00	TCM (100M) α =1,4280	− 99,9…+ 200 °C			
P 100	TCΠ (Pt100) α =1,3850	− 99,9…+ 850 °C			
1007	ΤСΠ (100Π) α =1,3910	− 99,9…+ 850 °C			
c500	TCM (Cu500) α =1,426	−50+200 °C			
c.500	TCM (500M) α =1,428	– 99,9…+ 200 °C			
P500	TCΠ (Pt500) α =1,385	– 99,9…+ 850 °C			
5007	TCΠ (500Π) α =1,391	− 99,9…+ 850 °C			
∩500	TCH (500H), α=1,617	−60+ 180 °C			
c Æ3	TCM (1000M) α =1,426	−50+200 °C			
c. E3	TCM (Cu1000) α =1,428	− 99,9+ 200 °C			
P (E3	TCΠ (Pt1000) α =1,385	− 99,9+ 300 °C			
Æ37	ΤСΠ (1000Π) α =1,391	– 99,9…+ 300 °C			
n E3	TCH (1000H) α =1,617	−60+ 180 °C			
Нестандартизированные термопреобразователи					
сопротивления					
c53	TCM (53M) α =1,4260	−50+200 °C			
	(гр.23)				

Примечание * Здесь и далее, а – отношение сопротивления датчика при 100°C к его сопротивлению при 0°C

Таблица 6.2 – Параметры линии связи прибора с

Тип датчика	R _∑ соединяемых проводов, Ом, не более	R _{линии} , Ом, не более	Исполнение линии
Термометр сопротивления	-	15,0	2-, 3- и 4-х проводная, провода равной длины и сечения
Термопара	100	1	Термоэлектро дный кабель (компенсацион ный)

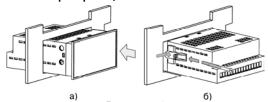
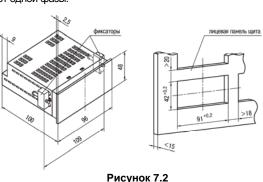
7 Монтаж и подключение

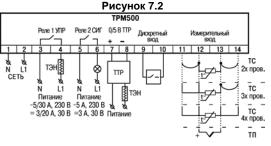
7.1 Общие требования к монтажу:

При монтаже рекомендуется соблюдать следующие требования:

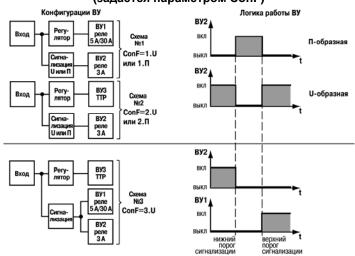
- 1.1.1 Подключение прибора следует производить к сетевому фидеру 230 В 50 Гц, не связанному непосредственно с питанием мощного силового 7.1.1 оборудования. Во внешней цепи рекомендуется установить выключатель питания, обеспечивающий отключение прибора от сети, и плавкие предохранители на ток 0,5 А.
- Схемы подключения датчиков приведены рисунке 9.3. Параметры линии соединения прибора с датчиком приведены в таблице 6.2.

7.2 Монтаж прибора в щит

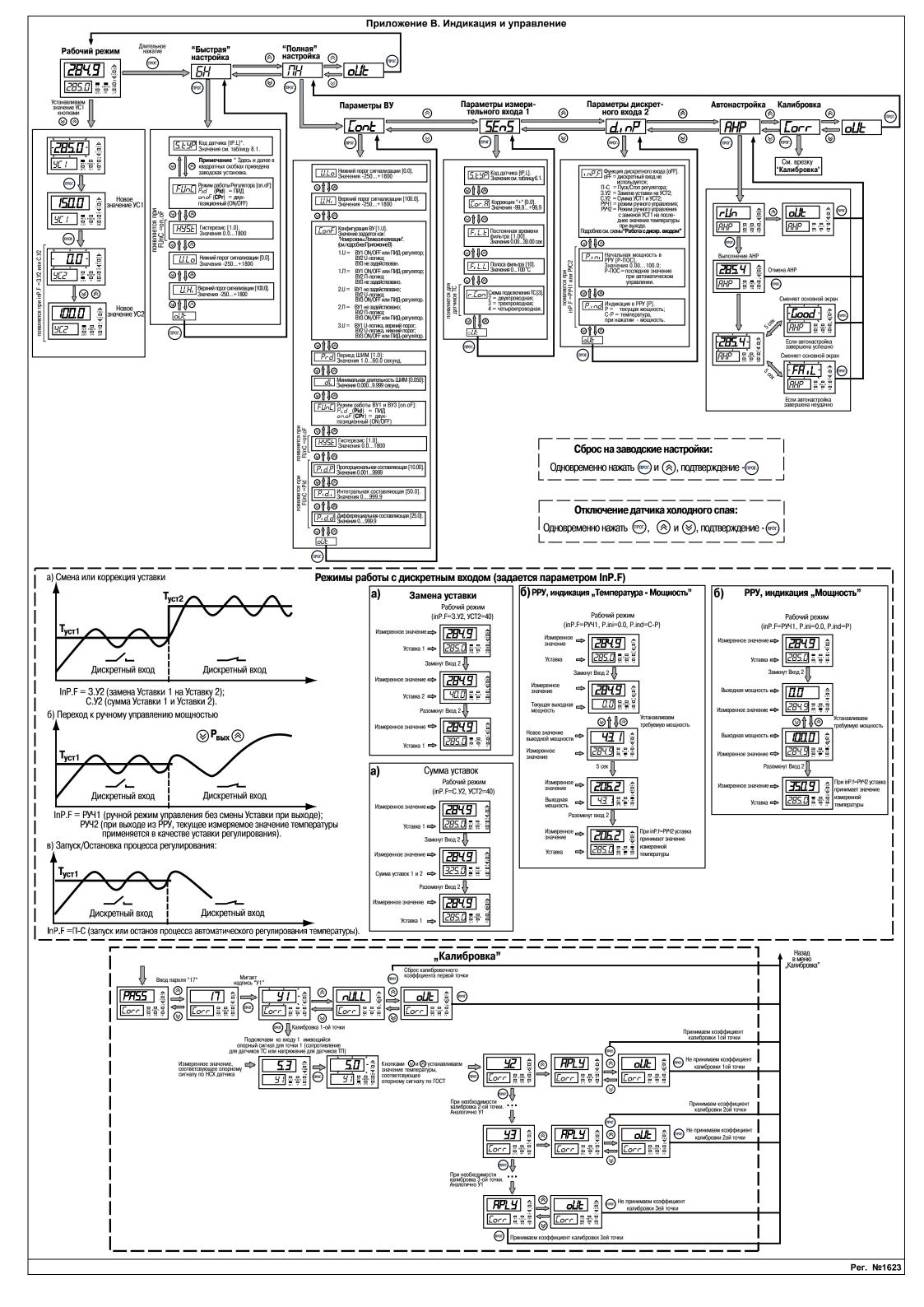




Рисунок 7.1 7.2.1 Вставьте прибор в подготовленное отверстие на лицевой панели щита (см. рисунок 7.2);

7.2.2 Вставьте фиксаторы из комплекта поставки в отверстия на боковых стенках прибора (рисунок 7.1,а);


7.2.3 С усилием заверните винты M4x35 в отверстиях каждого фиксатора так, чтобы прибор был плотно прижат к лицевой панели щита (рисунок 7.1, б).

Внимание! При монтаже следует соблюдать меры безопасности, указанные в разделе 3. Питание прибора и питание исполнительных устройств следует осуществлять



Приложение А. Логика работы и конфигурация ВУ (задается параметром ConF)

ЦИ1 — Измеренное значение или Уставка в режиме РАБОТА; мощность в режиме ручного управления; Кратковременное нажатие - увеличение значения параметра в режиме настройки: Параметра в режиме настройки, Длительное нажатие — переход в конец списка группь параметров (oUt) в режиме настройки. название группы параметров, название, значение параметра в режиме настройю ошибка измерения (обрыв или КЗ датчика. ВНИЗ – уменьшение значения параметра выход за диапазон измерения, неисправност скемы компенсации холодного спая) в режиме настройки. ПРОГ ЦИ2 (опция) – Уставка в режиме РАБОТА; Кратковременное нажатие - вход в группу параметров в режиме ручного управления; название, значение параметра запись значения параметра с одновременным переходо к следующему параметру группы. Дительное нажатие - входа в режим настройки; отмена редактирования параметра в режиме настройки. в режиме настройки УСТ1 — светится при работе по уставке1, сумме уставок; t выше — светится при Тизм > Верхнего порога сигнализации УСТ2 – светится при работе по уставке2, сумме уставо t норм — светится при Нижн. порогасилнализ. < Тизм < Верхн. порога сигнали: - мигает при редактировании уставки2 Примечание - При работе по сумме уставок t ниже — светится при Тизм > Нижнего порога сигнализации УСТ1 и УСТ2 светятся одновременно РАБОТА - светится в режиме УПР – светится при включенном ВУ1 или ВУ3 автоматического регулирования; - мигает при выполнении автоматический настройки ПИД-регулятора СИЕ — светится помощибке на изм. вхоле и/или выхоле за полог сигнализации. РУЧ - светится в режиме ручного управления

Приложение Б. Индикация и управление

