СОГЛАСОВАНО

"BO OBEH

Директор ООО «ВО ОВЕН»

Е. А. Анакин

2013 г.

УТВЕРЖДАЮ

Генеральный директор

HHЦ «Институт метрология»

А. С. Дудолад

2013 г.

Метрология

Измерители цифровые одноканальные ОВЕН ИДЦ1

Методика поверки

МПУ 08-203:2013

Харьков

2013

ПРЕДИСЛОВИЕ

1 РАЗРАБОТАНО: Национальный Научный Центр «Институт метрологии», калибровочная лаборатория ООО «ВО ОВЕН»

РАЗРАБОТЧИКИ: Коваленко И. В. нач. калибровочной лаборатории ООО «ВО ОВЕН»,

Малышко Л. М. гл. метролог ООО «ВО ОВЕН»,

Постникова В. Л. начальник НИЛ-42 ННЦ «Институт метрологии»

- **2 УТВЕРЖДЕНО И ВВЕДЕНО В ДЕЙСТВИЕ** <u>21 ноября</u> **2013** г.
- 3 ВВЕДЕНО ВПЕРВЫЕ

СОДЕРЖАНИЕ

	C.
1 Область применения	1
2 Нормативные ссылки	2
3 Операции поверки	2
4 Средства поверки	3
5 Требования к квалификации поверителей	4
6 Требования безопасности	4
7 Условия проведения поверки	5
8 Подготовка к поверке	5
9 Проведение поверки	6
10 Оформление результатов поверки	9

Метрология

Измерители цифровые одноканальные ОВЕН ИДЦ1

Методика поверки

МПУ 08-203:2013

Метрологія

Вимірювачі цифрові одноканальні ОВЕН ИДЦ1

Методика повірки

МПУ 08-203:2013

Дата введения	 2013 г.

СОКРАЩЕНИЯ

В данной методике поверки (калибровки) (далее – поверки) приняты следующие сокращения:

ВС – входной сигнал;

МП – методика поверки;

РЭ – руководство по эксплуатации поверяемого прибора;

СИТ – средства измерительной техники;

ЦПУ – цифровое показывающее устройство;

ЭД – эксплуатационные документы.

1 ОБЛАСТЬ ПРИМЕНЕНИЯ

Настоящая методика поверки (далее – МП) устанавливает методы поверки измерителей цифровых одноканальных ОВЕН ИДЦ1 (далее – прибор), предназначенных для:

- преобразования сигналов измерительной информации, поступающих от первичных измерительных преобразователей (ПИП) физических величин (например, температуры, давления, влажности, расхода, уровня), имеющих выходные сигналы напряжения или силы постоянного тока по ГОСТ 26.011, в значения физических ве-

личин;

- отображения текущего значения физической величины на цифровом показывающем устройстве (ЦПУ).

Данная МП устанавливает методы и средства первичной и периодической поверок.

Периодичность проведения поверки прибора: не реже одного раза в два года.

2 НОРМАТИВНЫЕ ССЫЛКИ

В МП приведены ссылки на следующие нормативные и другие документы:

ДСТУ 2708:2006 Метрологія. Повірка засобів вимірювальної техніки. Організація та порядок проведення.

ДСТУ 3215-95 Метрологія. Метрологічна атестація засобів вимірювальної техніки. Організація та порядок проведення.

ДСТУ ІЕС 61010-1 Вимоги безпеки до електричного устаткування для вимірювання, керування та лабораторного застосування. Частина 1. Загальні вимоги (ІЕС 61010-1:2001, IDT).

ГОСТ 12.1.005-88 ССБТ. Общие санитарно-гигиенические требования к воздуху рабочей зоны.

ГОСТ 12.1.030-81 ССБТ. Электробезопасность. Защитное заземление, зануление.

ГОСТ 12.2.003-91 ССБТ. Оборудование производственное. Общие требования безопасности.

ГОСТ 12.3.019-80 ССБТ. Испытания и измерения электрические. Общие требования безопасности.

ГОСТ 26.011-80 Средства измерений и автоматизации. Сигналы тока и напряжения электрические непрерывные входные и выходные.

ГОСТ 12997-84 Изделия ГСП. Общие технические условия.

ГОСТ 24555-81 Система государственных испытаний продукции. Порядок аттестации испытательного оборудования. Общие положения.

ДБН В.2.5-28-2006 Природне штучне освітлення.

НПАОП 40.1-1.21-98 Государственный нормативный акт. Правила безопасной эксплуатации электроустановок потребителей.

СП 1042-73 Санитарные правила организации технологических процессов и гигиенические требования к производственному оборудованию.

3 ОПЕРАЦИИ ПОВЕРКИ

3.1 При проведении поверки должны быть выполнены операции, приведенные в таблице 1.

Таблица 1

Наименование операции	Номер	Проведение операций при по-		
	пункта МП	верке		
		первичной	периодической	
1 Внешний осмотр	9.1	да	да	
2 Проверка электрической прочности	9.2	да	нет	
изоляции				
3 Проверка электрического сопротив-	9.3	да	да	
ления изоляции				
4 Опробование	9.4	да	да	
5 Определение основных метрологи-	9.5	да	да	
ческих характеристик				
6 Оформление результатов поверки	10	да	да	

3.2 При получении отрицательных результатов любой операции дальнейшая поверка прекращается и результаты поверки признаются отрицательными.

4 СРЕДСТВА ПОВЕРКИ

4.1 При проведении поверки должны применяться перечисленные в таблице 2 рабочие эталоны, СИТ и вспомогательное оборудование.

Таблица 2

Номер	Наименование СИТ и испытательного оборудования, разряд по государ-		
пункта МП	ственной поверочной схеме и (или) метрологические и основные техниче-		
IVIII	ские характеристики		
1	2		
7	Гигрометр психрометрический ВИТ-2:		
	- измерение температуры от 15 °C до 40 °C, $\Delta = \pm 0.2$ °C;		
	- влажности от $20~\%$ до $93~\%$, $\Delta=\pm~7\%$		

1	2
	Барометр-анероид БАММ-1:
	- измерение атмосферного давления от 80 кПа до 106 кПа, $\Delta = \pm$ 0,2 кПа
9.2	Установка УПУ-6:
	- выходное напряжение до 6 кВ;
	- максимальный выходной ток 100 мА;
	- приведенная погрешность установки и измерения напряжения ± 3%;
	- потребляемая мощность не более 650 В-А
9.3	Мегаомметр М4100/3:
	- измерение сопротивления постоянному току до 100 МОм;
	- класс точности 1,0;
	- выходное напряжение 500 В
9.4	Одноканальный источник питания постоянного тока АВМ 8603:
9.5	- выходное напряжение от 0 В до 60 В;
	- выходной ток от 0 А до 3 А;
	- пределы допускаемого отклонения выходного напряжения $\pm 0.02~\%$
	Прибор для поверки вольтметров, дифференциальный вольтметр В1-12:
	- класс точности: в режиме калибратора напряжения – 0,005; в режиме
	калибратора тока – 0,025

- 4.2 Допускается применение других рабочих эталонов, СИТ или вспомогательного оборудования, обеспечивающих измерение соответствующих параметров с требуемой точностью.
- 4.3 Рабочие эталоны и СИТ, применяемые при поверке, должны быть поверены согласно ДСТУ 2708 или пройти метрологическую аттестацию согласно ДСТУ 3215 и иметь действующие свидетельства о поверке или государственной метрологической аттестации.

5 ТРЕБОВАНИЯ К КВАЛИФИКАЦИИ ПОВЕРИТЕЛЕЙ

- 5.1 Поверку приборов могут проводить лица, имеющие необходимую квалификацию в области измерения электрических величин и аттестованные в качестве поверителей.
- 5.2 К поверке допускаются лица, прошедшие инструктаж по технике безопасности при работе на электроустановках.

6 ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

- 6.1 При проведении поверки должны быть соблюдены общие правила по технике безопасности в соответствии с ГОСТ 12.2.003 и ГОСТ 12.3.019.
- 6.2 Основные требования и необходимые условия для обеспечения безопасности во время проведения поверки:
- условия поверки должны соответствовать требованиям, установленным в СП 1042-73;
- на рабочем месте должна быть обеспечена освещенность (общая и местная) согласно ДБНВ.2.5-28;
 - микроклимат в воздухе рабочей зоны должен соответствовать ГОСТ 12.1.005-88;
- в части электробезопасности должны быть соблюдены требования НПАОП 40.1-1.21.
- 6.3 Все приборы, входящие в состав рабочего места для проведения поверки, должны быть заземлены. Заземление необходимо производить раньше других присоединений, отсоединение заземления после всех отсоединений в соответствии с ГОСТ 12.1.030.

7 УСЛОВИЯ ПРОВЕДЕНИЯ ПОВЕРКИ

При проведении поверки должны поддерживаться следующие условия:

- температура окружающей среды (20 ± 5) °C;
- относительная влажность окружающей среды до 80 %;
- атмосферное давление от 84,0 кПа до 106,7 кПа;
- напряжение питания постоянного тока $(24,0\pm0,2)$ B;
- отсутствие внешних магнитных полей (кроме земного), влияющих на работу приборов.

8 ПОДГОТОВКА К ПОВЕРКЕ

- 8.1 Подготовить приборы, эталоны, СИТ, испытательное и вспомогательное оборудование, применяемые при поверке, к работе в соответствии с их ЭД.
- 8.2 Обеспечить и контролировать условия проведения поверки, указанные в п. 7 МП.

9 ПРОВЕДЕНИЕ ПОВЕРКИ

9.1 Внешний осмотр

- 9.1.1 При внешнем осмотре поверяемых приборов должно быть установлено соответствие следующим требованиям:
- комплектность и маркировка поверяемого прибора должна соответствовать ЭД на него;
- прибор не должен иметь видимых механических повреждений корпуса, лицевой панели, органов управления, все надписи на панелях должны быть четкими и ясными;
 - пломбы (если они предусмотрены) должны быть целы;
- разъёмы, клеммы и измерительные провода не должны иметь повреждений и должны быть чистыми.
- 9.1.2 Результаты проверки считать положительными, если комплектность и маркировка прибора соответствуют ЭД, отсутствуют механические повреждения корпуса, разъёмов, клемм и измерительных проводов.

9.2 Проверка электрической прочности изоляции

- 9.2.1 Проверку электрической прочности изоляции проводить по методике, изложенной в ДСТУ ІЕС 61010-1, при помощи пробойной установки типа УПУ-6 или аналогичной.
- 9.2.2 На время испытаний объединить между собой перемычками контакты прибора по группам:
 - питание;
 - выходные устройства (каждое в отдельную группу);
 - входы (измерительный и «HOLD» в одну группу);
 - интерфейс (при наличии).

Испытательное напряжение синусоидальной формы частотой 50 Гц среднеквадратическим значением 620 В последовательно прикладывать между:

- корпусом прибора и всеми группами цепей;
- группами цепей.
- 9.2.3 Результаты проверки считать положительными, если не произошло про-

боя или поверхностного перекрытия изоляции. Появление коронного разряда не является признаком неудовлетворительных испытаний.

9.3 Проверка электрического сопротивления изоляции

- 9.3.1 Проверку электрического сопротивления изоляции проводить по методике, изложенной в ГОСТ 12997 при помощи мегомметра, например, М4100/3, испытательным напряжением 500 В. Точки приложения испытательного напряжения выбираются в соответствии с п. 9.2.2.
- 9.3.2 Результаты проверки считать положительными, если измеренное значение электрического сопротивления изоляции составляет не менее 20 МОм.

9.4 Опробование

- 9.4.1 Допускается проводить опробование сразу после включения поверяемого прибора. Во время проведения опробования контролировать работу индикаторных устройств прибора.
- 9.4.2 Включить прибор, проверить согласно РЭ возможность изменения параметров конфигурации: выбор ВС, выбор положения десятичной точки. Установить нижнее индицируемое значение $Y_{\text{мин}}$ равным минус 9900, верхнее индицируемое значение $Y_{\text{макс}}$ равным 9900, положение десятичной точки любое.
- 9.4.3 Подключить к входу проверяемого прибора эталонный источник BC, например, прибор для поверки вольтметров, дифференциальный вольтметр B1-12, установить значения BC, находящиеся в диапазоне BC, выбранного при конфигурировании прибора.
- 9.4.4 Результаты проверки считать положительными, если прибор соответствует требованиям, указанным в РЭ.

9.5 Определение основных метрологических характеристик

Проверку проводить во всех контрольных точках для всех ВС, предусмотренных к применению с прибором.

Перед определением метрологических характеристик поверяемый прибор должен быть выдержан во включённом состоянии не менее 30 минут.

9.5.1 Приборы должны преобразовывать значение ВС в отображаемое на ЦПУ значение в пределах допускаемых отклонений в соответствии с характеристикой

преобразования по формуле:

$$Y_{\delta \hat{a}\tilde{n} \div} = \frac{\left(Y_{i\hat{a}\hat{e}\tilde{n}} - Y_{i\hat{e}\hat{t}}\right) \cdot \left(X - X_{i\hat{e}\hat{t}}\right)}{X_{i\hat{a}\hat{e}\tilde{n}} - X_{i\hat{e}\hat{t}}} + Y_{i\hat{e}\hat{t}} , \qquad (1)$$

где $Y_{pac^{q}}$ – ожидаемые показания ЦПУ при текущем значении ВС X;

 $X_{\text{макс}}, X_{\text{мин}}$ – предельные значения BC, мA, B;

 $Y_{\scriptscriptstyle MUH}$ — ожидаемые показания ЦПУ при значении ВС $X_{\scriptscriptstyle MUH}$ (нижнее индицируемое значение);

 $Y_{{\scriptscriptstyle M\!A\!K\!C}}$ – ожидаемые показания ЦПУ при значении ВС $X_{{\scriptscriptstyle M\!A\!K\!C}}$ (верхнее индицируемое значение).

9.5.2 Проверку диапазонов BC и основной абсолютной погрешности проводить, выполняя следующие операции:

Подготовить приборы к работе с одним из ВС.

Установить значения $Y_{\text{мин}}$ (нижнее индицируемое значение) равным минус 9900, $Y_{\text{макс}}$ (верхнее индицируемое значение) равным 9900, положение десятичной точки – любое.

Подключить к входу проверяемого прибора эталонный источник BC, например, прибор для поверки вольтметров, дифференциальный вольтметр B1-12.

9.5.3 Последовательно установить значения BC, соответствующие контрольным точкам 0, 25, 50, 75, 100 % от диапазона BC в соответствии с таблицей 3 и фиксировать по установившимся показаниям ЦПУ преобразованное прибором значение BC для каждой из этих точек.

Таблина 3

тавлица э						
Диапазоны ВС	Пределы ос-	Контрольные точки диапазона ВС, %				
	новной абсо-	0	25	50	75	100
	лютной по-	Y_{pac4}				
	грешности	- 9900	- 4950	0	4950	9900
	$\Delta_{YMa\kappa c}$	Значения ВС в контрольных точках, мА, В				
от 0 мА до 5 мА	4 51 k	0,00	1,25	2,50	3,75	5,00
от 4 мА до 20 мА		4,00	8,00	12,00	16,00	20,00
от 0 мА до 20 мА		0,00	5,00	10,00	15,00	20,00
от 0 В до 10 В		0,00	2,50	5,00	7,50	10,00
от 0 В до 1 В	100	0,00	0,25	0,50	0,75	1,00

Рассчитать для каждой контрольной точки основную абсолютную погрешность по формуле:

$$\Delta_Y = Y_{pacy} - Y, \qquad (2)$$

где Δ_{Y} – основная абсолютная погрешность прибора;

- Y отображаемое на ЦПУ значение в контрольной точке.
- 9.5.4 Последовательно подготовить проверяемые приборы к работе с остальными ВС, провести испытания в соответствии с п. 9.5.3.
- 9.5.5 Результаты проверки считать положительными, если основная абсолютная погрешность прибора в каждой контрольной точке не превышает значения пределов основной абсолютной погрешности, указанного в таблице 3.

10 ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ПОВЕРКИ

Результаты поверки оформляются в соответствии с ДСТУ 2708.

- 10.1 Результаты измерений, полученные во время проведения поверки, оформляются протоколом, который подписывают непосредственные исполнители.
- 10.2 При положительных результатах поверки в ЭД ставится оттиск поверочного клейма или оформляется свидетельство о поверке, форма которого приведена в приложении А ДСТУ 2708.
- 10.3 При отрицательных результатах поверки оформляется справка о непригодности рабочего СИТ, форма которой приведена в приложении Б ДСТУ 2708.