

OBEH TPM151-03

Измеритель-ПИД-регулятор

руководство по эксплуатации АРАВ.421210.009-03 РЭ

Содержание

B	вед	ение		4
1	H	азначе	ние прибора	5
2	Т	ехниче	ские характеристики и условия эксплуатации	6
	2.1	Техн	ические характеристики прибора	6
	2.2	Усло	вия эксплуатации	8
3	У	стройс	тво и работа прибора	9
	3.1	Опис	сание прибора	9
		3.1.1	Схема прибора	9
		3.1.2	Канал регулирования	9
		3.1.3	Пошаговое регулирование. Программа технолога	10
		3.1.4	Измерительные входы	12
		3.1.5	Вычислитель	15
		3.1.6	Регулятор	16
		3.1.7	Управление трехпозиционным ИМ	17
		3.1.8	Выходные элементы	18
		3.1.9	Уставка	18
		3.1.10	Сетевой интерфейс RS-485	
		3.1.11	Реакция прибора на спучайное отключение питания	20
	3.2	Конс	т сащия прибора на слу налисе с нале тепле плишия прибора	20
	0.2	321	Пицевая панель прибора. Инликация и управление	20
4	м	о. <u> </u>	лицевал наполь присора. Индикация и управление польти и при вологие польти и наполь присора. Индикация и управление польти и	25
5	M	ісры ос Іонтаж	и полключение прибора	26
Š	5 1	Монт	аж прибора в корпусе настенного креппения (ОВЕН ТРМ151-Н)	26
	5.1	511	Полготорка в корпусствается поста в шкафу управления	26
		512	Истановка посадочного места в шкафу управления	20
	52	J. I.Z Mour	установка приоора на вертикальную стенку в шкафу управления	20 26
	J.Z	524	аж приоора в корпусе щитового крепления (ОВЕП ТРИТОТ-щТ)	20 26
		5.2.1	Подготовка посадочного места на щите управления	20
	E 2	J.Z.Z	установка приоора в щит управления	21 27
	5.5	E 2 4	Таж внешних связеи	21 27
		5.3.1	Оощие треоования	
		5.3.2	указания по монтажу	27
	5.4	ПОДН	лючение приоора	28
		5.4.1	Оощие указания	28
		5.4.2	Подключение внешних устроиств управления	28
		5.4.3	Подключение датчиков	29
_	_	5.4.4	Подключение к ПК по интерфейсу RS-485	31
6	П	рограм	имирование прибора	32
	6.1	Общ	ие принципы программирования прибора	32
	6.2	Посл	едовательность задания программируемых параметров прибора	32
		6.2.1	Задание Конфигурации прибора	32
		6.2.2	Задание Программы технолога	33
		6.2.3	Задание вспомогательных параметров прибора	33
7	H	астрой	ка сетевого интерфейса RS-485	34
	7.1	Сете	вые параметры и их заводские установки	34
	7.2	Базо	вый адрес прибора	34
	7.3	Изме	енение сетевых параметров прибора	35
		7.3.1	Изменение сетевых параметров прибора с помощью Конфигуратора	35
		7.3.2	Изменение сетевых параметров прибора кнопками на лицевой панели	35
	7.4	Изме	енение сетевых параметров программы	35
8	П	рограм	іма «Конфигуратор ТРМ151»	37

8.1 Назначение 33 8.2 Установка Конфигуратора с помощью Мастера конфигураций ТРМ151. Установка 28.3 Запуск конфигуратора с помощью Мастера конфигураций ТРМ151. Установка связи с прибором 33 8.4 Причины отсутствия связи прибора с компьютером и способы их устранения. 8.4 Причины отсутствия связи прибора с компьютером и способы их устранения. 8.5 Уровни доступа. 4.6.1 Лист «Дерево параметров» 4.8.6.1 Пист «Таблица программ» 4.8.6.2 Лист «Таблица программ» 4.8.6.3 Меню Конфигуратора 8.6.4 Панель инструментов Конфигурации 4.7.1 Создание новой конфигурации из файла 8.7.2 Загрузка программы на другом уровне доступа или смена модификации 8.7.3 Открытие конфигурации из файла 8.7.4 Создание конфигурации из файла 8.7.5 Считывание конфигурации из прибора 8.7.6 Редактирование значений параметрое 8.7.7 Инициализация прибора 8.7.8 Запись значений параметрое в прибор 8.8.1 Просмотр и сохранение параметрое в прибор 8.8.2 Сокранение вравила при работе в Главн				
8.2 Установка Конфигуратора с помощью Мастера конфигураций ТРМ151. Установка 8.3 Запуск конфигуратора с помощью Мастера конфигураций ТРМ151. Установка 8.4 Причины отсутствия связи прибора с компьютером и способы их устранения. 3.5 Уровни доступа. 4.6.1 Интерфейс пользователя. 4.8.6.1 Лист «Габлица программ» 8.6.2 Лист «Таблица программ» 4.8.6.1 Пист «Таблица программ» 4.8.6.2 Лист «Таблица программ» 4.8.6.3 Мень Конфигуратора 4.8.6.4 Панель инструментов Конфигуратора 4.8.7 Работа с Конфигуратором. 4.7 Работа с Конфигурации и з файла 8.7.1 Сохранение конфигурации и з файла 4.7.2 Загрузка программы на другом уровне доступа или смена модификации. 4.7.3 Открытие конфигурации и з файла 4.7.4 К.7.4 8.7.5 Считывание конфигурации и з файла 4.8.7.6 Редактировование значений параметров в прибор. 4.7.7 Иницализация прибора 8.7.8 Запись значений оперативных параметров в файл 5.8.2 Сохранение параметров в прибор. 8.7.9 П	8.1	Назн	ачение	37
8.3 Запуск конфигуратора с помощью Мастера конфигураций ТРМ151. Установка связи с прибором	8.2	Уста	новка Конфигуратора	37
связи с прибором	8.3	Запу	ск конфигуратора с помощью Мастера конфигураций ТРМ151. Установка	
8.4 Причины отсутствия связи прибора с компьютером и способы их устранения 4 8.5 Уровни доступа 4 8.6 Интерфейс пользователя. 4 8.6.1 Лист «Таблица программ» 4 8.6.2 Лист «Таблица программ» 4 8.6.3 Меню Конфигуратора 4 8.6.4 Панель инструментов Конфигуратора 4 8.6.7 Работа с Конфигуратора 4 8.7.1 Создание новой конфигурации 4 8.7.2 Загрузка программы на другом уровне доступа или смена модификации 4 8.7.3 Открытие конфигурации из файла. 4 8.7.4 Сохранение конфигурации из файла. 4 8.7.5 Считывание конфигурации из прибора 4 8.7.6 Редактирование значений параметров в прибор. 4 8.7.7 Инициализация прибора 5 8.7.8 Запись значений параметров в прибор. 4 8.7.8 Запись значений параметров текущего состояния 4 8.8.1 Просомотр и сохранение параметрат TPM1611-03» 5 <td< td=""><td>CBS</td><td>ізи с пр</td><td>рибором</td><td>37</td></td<>	CBS	ізи с пр	рибором	37
8.6 Интерфейс пользователя	8.4	Прич	нины отсутствия связи прибора с компьютером и способы их устранения	39
8.6 Интерфейс пользователя	8.5	Уров	зни доступа	40
8.6.1 Лист «Дерево параметров» 4 8.6.2 Лист «Каблица программ» 4 8.6.3 Меню Конфигуратора 4 8.6.4 Панель инструментов Конфигуратора 4 8.7 Работа с Конфигуратором. 4 8.7.1 Создание новой конфигурации из файла 4 8.7.2 Загрузка программы на другом уровне доступа или смена модификации .4 8.7.3 Открытие конфигурации из файла. 4 8.7.4 Сохранение конфигурации из прибора 4 8.7.5 Считывание конфигурации из прибора 4 8.7.6 Редактирование значений параметров в прибор 4 8.7.7 Инициализация прибора 4 8.7.8 Запись значений параметров в прибор 4 8.7.8 Запись значений перативных параметров в файл 5 8.8.1 Просмотр и сохранение параметров текущего состояния 4 8.8.1 Просмотр и сохранение параметров трибор 5 8.8.2 Сохранение параметров копок на лицевой панели прибора 5 9.1.1 Осцие принципы программирования. 5 9.1.2 Вход в раких программирования. 5	8.6	Инте	рфейс пользователя	41
8.6.2 Лист « Таблица программ» 4 8.6.3 Меню Конфигуратора 4 8.6.4 Панель инструментов Конфигуратора 4 8.7 Работа с Конфигуратором. 4 8.7.1 Создание новой конфигурации 4 8.7.2 Загрузка программы на другом уровне доступа или смена модификации 4 8.7.3 Открытие конфигурации из файл 4 8.7.4 Сохранение конфигурации из файл 4 8.7.5 Считывание конфигурации из прибора 4 8.7.6 Редактирование значений параметров 4 8.7.7 Инициализация прибора 4 8.7.8 Запись значений параметров в прибор 4 8.7.1 Проскотр и сохранение параметров в скущего состояния 4 8.8.1 Проскотр и сохранение параметров в прибор 5 8.8.2 Сохранение значений оперативных параметров в файл 5 9 Порграммирования 5 9.1 Общие принципы программирования 5 9.1 Осщие принципы программирования Главное меню 5 9.1.3 Выбор Элемента (Кан		8.6.1	Лист «Дерево параметров»	41
8.6.3 Меню Конфигуратора 4 8.6.4 Панель инструментов Конфигуратора 4 8.7 Работа с Конфигуратором		8.6.2	Лист «Таблица программ»	42
8.6.4 Панель инструментов Конфигуратора		8.6.3	Меню Конфигуратора	43
8.7 Работа с Конфигуратором		8.6.4	Панель инструментов Конфигуратора	46
8.7.1 Создание новои конфигурации 8.7.2 Загрузка программы на другом уровне доступа или смена модификации 4.7.3 Открытие конфигурации из файла 4.7.4 Сохранение конфигурации из прибора 4.7.5 Считывание конфигурации из прибора 4.7.6 Редактирование значений параметров 4.7.7 Инициализация прибора 4.7.7 Инициализация прибора 4.7.7 Инициализация прибора 4.7.8 Запись значений параметров в прибор 4.8.7 Инициализация прибора 4.8.7 Инициализация прибора 5.8 Просмотр и сохранение параметров текущего состояния 4.8.1 Просмотр значений оперативных параметров в файл 5.8.2 Сохранение значений оперативных параметров в файл 5.9 Программа быстрый старт TPM151-03» 5.9 Программирование с помощью кнопок на лицевой панели прибора 5.9.1.1 Основные правила при работе в Главном меню и при выборе Элемента 5.1.1 Основные правистрами Индикация при задании параметра 5.1.2 Вход в режим Программирования 5.1.3 Выбор Элемента (Канала, Програмыь, Шага и т. д.) 5.1.4 Вход в режим Програмы те	8.7	Pabo	та с Конфигуратором	46
8.7.2 Загрузка программы на другом уровне доступа или смена модификации 4 8.7.3 Открытие конфигурации из файла 4 8.7.4 Сохранение конфигурации в файл 4 8.7.5 Считывание конфигурации из прибора 4 8.7.6 Редактирование значений параметров 4 8.7.7 Инициализация прибора 4 8.7.8 Запись значений параметров в прибор 4 8.7.8 Запись значений оперативных параметров в файл 5 8.8.1 Просмотр и сохранение параметров текущего состояния 4 8.8.1 Просмотр значений оперативных параметров в файл 5 8.8.2 Сохранение значений оперативных параметров в файл 5 8.8.1 Просмотр и сохранение параметров налицевой панели прибора 5 9 Программирования 5 8.2 Сохранение значений оперативных параметров в файл 9.1 Общие принципы программирования 5 9 9 9 10 06щие принципы программирования 5 9.1.1 9 10 2 5 9.1.3 8 8 10 2 5 9.1.5 10 3 3<		8.7.1	Создание новой конфигурации	46
8.7.3 Открытие конфигурации из файл 4 8.7.4 Сохранение конфигурации из прибора 4 8.7.5 Считывание конфигурации из прибора 4 8.7.6 Редактирование значений параметров 4 8.7.7 Инициализация прибора 4 8.7.8 Запись значений параметров в прибор 4 8.7.8 Запись значений параметров в прибор 4 8.8.1 Просмотр и сохранение параметров в прибор 4 8.8.1 Просмотр и сохранение параметров в текущего состояния 4 8.8.1 Просмотр значений оперативных параметров в файл 5 8.8.2 Сохранение значений оперативных параметров в файл 5 8.9 Программирования спортраммирования 5 9.1 Общие принципы программирования 5 9.1.1 Сокранение параметрами. Индикация при задании параметра 5 9.1.2 Вход в режим Программирования 5 9.1.5 Перемещение между параметрами. Индикация пи задании параметра 5 9.1.3 Выбор Элемента 5 9.1.5 Задание значения параметра 5 9.1.4 Вход в папку с параметров 5 9		8.7.2	Загрузка программы на другом уровне доступа или смена модификации	47
8.7.4 Сохранение конфигурации в фаил 4 8.7.5 Считывание конфигурации из прибора 4 8.7.6 Редактирование значений параметров 4 8.7.7 Инициализация прибора 4 8.7.8 Запись значений параметров в прибор 4 8.7.8 Запись значений параметров в прибор 4 8.8.1 Просмотр значений оперативных параметров 5 8.8.2 Сохранение значений оперативных параметров в файл 5 9.9 Программирование с помощью кнопок на лицевой панели прибора 5 9.1 Общие принципы программирования 5 9.1.1 Основные правила при работе в Главном меню и при выборе Элемента 5 9.1.2 Вход в ражил Программирования 5 9.1.3 Выбор Элемента (Канала, Программы, Шага и т. д.) 5 9.1.4 Вход в папку с параметрами. Индикация при задании параметра 5 9.1.5 Перемещение между параметра 5 9.1.6 Задание параметров 5 9.1.7 Сдвиг десятичной точки 5 9.1.8 Вложенные палки 5 9.1.7 Сдвиг десятичной точки		8.7.3	Открытие конфигурации из файла	47
8.7.5 Считывание конфигурации из прибора		8.7.4	Сохранение конфигурации в файл	47
8.7.6 Редактирование значений параметров 4 8.7.7 Инициализация прибора 4 8.7.8 Запись значений параметров в прибор 4 8.8 Просмотр и сохранение параметров текущего состояния 4 8.8.1 Просмотр значений оперативных параметров в файл 5 8.8.2 Сохранение значений оперативных параметров в файл 5 8.9 Программа «Быстрый старт TPM151-03» 5 9 Программа «Быстрый старт TPM151-03» 5 9 Пограмма «Быстрый старт TPM151-03» 5 9.1 Общие принципы программирования 5 9.1.1 Основные правила при работе в Главном меню и при выборе Элемента 5 9.1.1 Основные правила при работе в Главном меню и при выборе Элемента 5 9.1.2 Вход в режим Программирования. Главное меню 5 9.1.3 Выбор Элемента (Канала, Программы, Шага и т. д.) 5 9.1.4 Вход в раку с параметрам. Индикация при задании параметра 5 9.1.5 Задание значения параметра 5 9.1.6 Задание значения параметра 5 9.1.7 Сдвиг десятичной точки 5		8.7.5	Считывание конфигурации из прибора	47
8.7.7 Инициализация прибора		8.7.6	Редактирование значений параметров	48
8.7.8 Запись значений параметров в прибор		8.7.7	Инициализация прибора	48
8.8 Просмотр и сохранение параметров текущего состояния 4 8.8.1 Просмотр значений оперативных параметров 5 8.8.2 Сохранение значений оперативных параметров в файл 5 8.8.2 Сохранение значений оперативных параметров в файл 5 8.9 Программа «Быстрый старт ТРМ151-03» 5 9 Программа «Быстрый старт ТРМ151-03» 5 9 Программирование с помощью кнопок на лицевой панели прибора 5 9.1 Общие принципы программирования 5 9.1.1 Основные правила при работе в Главном меню и при выборе Элемента 5 9.1.2 Вход в режим Программирования. Главное меню 5 9.1.3 Выбор Элемента (Канала, Программы, Шага и т. д.) 5 9.1.4 9.1.4 Вход в папку с параметрам. Индикация при задании параметра 5 9.1.5 Перемещение между параметра 5 9.1.7 Сдвиг десятичной точки 5 9.1.5 Перекима параметров 5 9.1.8 Вложенные папки 5 9.1.4 Вход в папку с параметров 5 9.1.3 Задания параметров 5 9.1.7 Сдвиг десят		8.7.8	Запись значений параметров в прибор	49
8.8.1 Просмотр значений оперативных параметров 5 8.8.2 Сохранение значений оперативных параметров в файл	8.8	Прос	смотр и сохранение параметров текущего состояния	49
8.8.2 Сохранение значений оперативных параметров в файл		8.8.1	Просмотр значений оперативных параметров	50
8.9 Программи «Быстрый старт ТРМ151-03» 5 9 Программирование с помощью кнопок на лицевой панели прибора 5 9.1 Общие принципы программирования 5 9.1.1 Основные правила при работе в Главном меню и при выборе Элемента 5 9.1.2 Вход в режим Программирования. Главное меню 5 9.1.3 Выбор Элемента (Канала, Программы, Шага и т. д.) 55 9.1.4 Вход в папку с параметрами. Индикация при задании параметра 55 9.1.5 Перемещение между параметрами в папке 5 9.1.7 Сдвиг десятичной точки 55 9.1.8 Вложенные папки 55 9.1.8 Вложенные папки 55 9.1.3 Задание параметров 55 9.1.4 Вход в режим программ технолога в режиме «Быстрого» 59 9.1.7 Сдвиг десятичной точки 55 9.1.8 Вложенные папки 55 9.1.8 Вложенные папки 55 9.1.3 Задание параметров 50 10.3 Задание параметров программ технолога в режиме «Быстрого» 51 10.4 Включение прибора 61		8.8.2	Сохранение значений оперативных параметров в файл	50
9 Программирование с помощью кнопок на лицевой панели прибора 5 9.1 Общие принципы программирования 5 9.1.1 Основные правила при работе в Главном меню и при выборе Элемента 5 9.1.2 Вход в режим Программирования. Главное меню 5 9.1.3 Выбор Элемента (Канала, Программы, Шага и т. д.) 5 9.1.4 Вход в папку с параметрами. Индикация при задании параметра 5 9.1.5 Перемещение между параметрами в папке. 5 9.1.6 Задание значения параметра 5 9.1.7 Сдвиг десятичной точки 5 9.1.8 Вложенные папки. 5 9.1.8 Вложенные папки 5 9.1.8 Вложенные папки 5 9.1.8 Вложенные папки 5 9.1.8 Вложенные папки 5 9.1 Эзадание параметров 5 9.1 Вкорора 5 9.1.8 Вложенные. 5 9.1.9 Вкородера 5 9.10 Эксплуатация провора 5 1	8.9	Прог	рамма «Быстрый старт ТРМ151-03»	51
9.1 Общие принципы программирования 5 9.1.1 Основные правила при работе в Главном меню и при выборе Элемента 5 9.1.2 Вход в режим Программирования. Главное меню 5 9.1.3 Выбор Элемента (Канала, Программы, Шага и т. д.) 5 9.1.4 Вход в папку с параметрами. Индикация при задании параметра 5 9.1.5 Перемещение между параметрами в папке 5 9.1.6 Задание значения параметра 5 9.1.7 Сдвиг десятичной точки 5 9.1.8 Вложенные папки 5 9.1.3 Выбор текущей программ технолога в режиме «Быстрого» программирования. 5 9.1.3 Вадание параметров 5 9.1.4 Вход в папки 5 9.1.7 Сдвиг десятичной точки 5 9.1.8 Вложенные папки 5 9.1.3 Задание параметров 5 9.1.3 Вадание параметров 5 9.1.3 Задания параметров 5 9.1.3 Задания параметров 5 9.1.3 Задания параметров 5 9.1.8 Вл	9 П	рограм	мирование с помощью кнопок на лицевой панели прибора	52
9.1.1 Основные правила при работе в Главном меню и при выборе Элемента	9.1	Общ	ие принципы программирования	52
9.1.2 Вход в режим Программирования. Главное меню 5 9.1.3 Выбор Элемента (Канала, Программы, Шага и т. д.) 5 9.1.4 Вход в папку с параметрами. Индикация при задании параметра 5 9.1.5 Перемещение между параметрами в папке 5 9.1.6 Задание значения параметра 5 9.1.7 Сдвиг десятичной точки 5 9.1.8 Вложенные папки 5 9.2 Схемы задания параметров 5 9.3 Задание параметров 5 9.3 Задание параметров 5 9.3 Задание параметров программ технолога в режиме «Быстрого» 6 10.1 Включение прибора 6 10.2 Выбор текущей программы и текущего шага для выполнения 6 10.3 Запуск и остановка программы технолога 6 10.4 Режим ручного управления Уставкой 6 10.5 Режим ручного управления выходной мощностью 7 10.6 Автоматическая настройка ПИД-регуляторов 7 10.6.1 Обще правила проведения автонастройки ПИД-регулятора 7 10.6.2 Порядок проведения Автонастройки <td< td=""><td></td><td>9.1.1</td><td>Основные правила при работе в Главном меню и при выборе Элемента</td><td>52</td></td<>		9.1.1	Основные правила при работе в Главном меню и при выборе Элемента	52
9.1.3 Выбор Элемента (Канала, Программы, Шага и т. д.) 5 9.1.4 Вход в папку с параметрами. Индикация при задании параметра 5 9.1.5 Перемещение между параметрами в папке 5 9.1.6 Задание значения параметра 5 9.1.7 Сдвиг десятичной точки 5 9.1.8 Вложенные папки 5 9.1.8 Вложенные папки 5 9.1.3 Задание параметров 5 9.2 Схемы задания параметров 5 9.3 Задание параметров 5 9.3 Задание параметров программ технолога в режиме «Быстрого» 5 программирования 5 5 10 Эксплуатация прибора 6 10.1 Включение прибора 6 10.2 Выбор текущей программы и текущего шага для выполнения 6 10.3 Запуск и остановка программы технолога 6 10.4 Режим ручного управления уставкой 6 10.5 Режим ручного управления выходной мощностью 7 10.6 Автоматическая настройка ПИД-регуляторов 7 10.6.1 Обще правила проведения		9.1.2	Вход в режим Программирования. Главное меню	53
9.1.4 Вход в папку с параметрами. Индикация при задании параметра 5 9.1.5 Перемещение между параметрами в папке 5 9.1.6 Задание значения параметра 5 9.1.7 Сдвиг десятичной точки 5 9.1.8 Вложенные папки 5 9.1.8 Вложенные папки 5 9.1.3 Вложенные папки 5 9.2 Схемы задания параметров. 5 9.3 Задание параметров программ технолога в режиме «Быстрого» 5 программирования. 5 5 10 Эксплуатация прибора 6 10.1 Включение прибора 6 10.2 Выбор текущей программы и текущего шага для выполнения 6 10.3 Запуск и остановка программы технолога 6 10.4 Режим ручного управления Уставкой 6 10.5 Режим ручного управления выходной мощностью 7 10.6 Автоматическая настройка ПИД-регуляторов 7 10.6.1 Общие правила проведения автонастройки ПИД-регулятора 7 10.6.2 Порядок проведения Автонастройки Регулятора 7 10.6.3		9.1.3	Выбор Элемента (Канала, Программы, Шага и т. д.)	53
9.1.5 Перемещение между параметрами в папке		9.1.4	Вход в папку с параметрами. Индикация при задании параметра	54
9.1.6 Задание значения параметра 5 9.1.7 Сдвиг десятичной точки 5 9.1.8 Вложенные папки 5 9.2 Схемы задания параметров 5 9.3 Задание параметров программ технолога в режиме «Быстрого» 5 программирования. 5 10 Эксплуатация прибора 5 10.3 Включение прибора 6 10.1 Включение прибора 6 10.2 Выбор текущей программы и текущего шага для выполнения. 6 10.3 Запуск и остановка программы технолога 6 10.4 Режим ручного управления Уставкой 6 10.5 Режим ручного управления выходной мощностью. 7 10.6 Автоматическая настройка ПИД-регуляторов 7 10.6.1 Общие правила проведения автонастройки ПИД-регулятора 7 10.6.2 Порядок проведения Автонастройки Регулятора 7 10.6.3 Индикация параметров автонастройки 7 10.6.4 Остановка автонастройки. 7 10.7 Аварийные ситуации и их возможные причины 7 10.7.1 Критическая АВАРИ		9.1.5	Перемещение между параметрами в папке	54
9.1.7 Сдвиг десятичной точки 5 9.1.8 Вложенные папки 5 9.2 Схемы задания параметров 5 9.3 Задание параметров программ технолога в режиме «Быстрого» 5 программирования. 5 10 Эксплуатация прибора 5 10.3 Включение прибора 6 10.1 Включение прибора 6 10.2 Выбор текущей программы и текущего шага для выполнения. 6 10.3 Запуск и остановка программы технолога 6 10.4 Режим ручного управления Уставкой 6 10.5 Режим ручного управления выходной мощностью. 7 10.6 Автоматическая настройка ПИД-регуляторов 7 10.6.1 Общие правила проведения автонастройки ПИД-регулятора 7 10.6.2 Порядок проведения Автонастройки Регулятора 7 10.6.3 Индикация параметров автонастройки. 7 10.6.4 Остановка автонастройки. 7 10.7 Аварийные ситуации и их возможные причины 7 10.7.1 Критическая АВАРИЯ 7		9.1.6	Задание значения параметра	54
9.1.8 Вложенные папки 5 9.2 Схемы задания параметров 5 9.3 Задание параметров программ технолога в режиме «Быстрого» 5 программирования		9.1.7	Сдвиг десятичной точки	55
9.2 Схемы задания параметров		9.1.8	Вложенные папки	55
9.3 Задание параметров программ технолога в режиме «Быстрого» программирования	9.2	Cxer	лы задания параметров	56
программирования	9.3	Зада	ние параметров программ технолога в режиме «Быстрого»	
10 Эксплуатация прибора 6 10.1 Включение прибора 6 10.2 Выбор текущей программы и текущего шага для выполнения 6 10.3 Запуск и остановка программы технолога 6 10.4 Режим ручного управления Уставкой 6 10.5 Режим ручного управления выходной мощностью 7 10.6 Автоматическая настройка ПИД-регуляторов 7 10.6.1 Общие правила проведения автонастройки ПИД-регулятора 7 10.6.2 Порядок проведения Автонастройки Риунятора 7 10.6.3 Индикация параметров автонастройки 7 10.6.4 Остановка автонастройки 7 10.7 Аварийные ситуации и их возможные причины 7 10.7.1 Критическая АВАРИЯ 7	про	ограмм	ирования	56
10.1 Включение прибора 6 10.2 Выбор текущей программы и текущего шага для выполнения 6 10.3 Запуск и остановка программы технолога 6 10.4 Режим ручного управления Уставкой 6 10.5 Режим ручного управления выходной мощностью 7 10.6 Автоматическая настройка ПИД-регуляторов 7 10.6.1 Общие правила проведения автонастройки ПИД-регулятора 7 10.6.2 Порядок проведения Автонастройки Регулятора 7 10.6.3 Индикация параметров автонастройки Регулятора 7 10.6.4 Остановка автонастройки 7 10.7 Аварийные ситуации и их возможные причины 7 10.7.1 Критическая АВАРИЯ 7	10 Э	ксплуа	тация прибора	67
10.2 Выбор текущей программы и текущего шага для выполнения	10.	1 Вклн	очение прибора	67
10.3 Запуск и остановка программы технолога 6 10.4 Режим ручного управления Уставкой 6 10.5 Режим ручного управления выходной мощностью 7 10.6 Автоматическая настройка ПИД-регуляторов 7 10.6.1 Общие правила проведения автонастройки ПИД-регулятора 7 10.6.2 Порядок проведения Автонастройки Регулятора 7 10.6.3 Индикация параметров автонастройки 7 10.6.4 Остановка автонастройки 7 10.7 Аварийные ситуации и их возможные причины 7 10.7.1 Критическая АВАРИЯ 7	10.3	2 Выб	ор текущей программы и текущего шага для выполнения	67
10.4 Режим ручного управления Уставкой 6 10.5 Режим ручного управления выходной мощностью 7 10.6 Автоматическая настройка ПИД-регуляторов 7 10.6.1 Общие правила проведения автонастройки ПИД-регулятора 7 10.6.2 Порядок проведения Автонастройки Регулятора 7 10.6.3 Индикация параметров автонастройки. 7 10.6.4 Остановка автонастройки. 7 10.7 Аварийные ситуации и их возможные причины 7 10.7.1 Критическая АВАРИЯ 7	10.3	3 Запу	ск и остановка программы технолога	67
10.5 Режим ручного управления выходной мощностью	10.4	4 Режи	им ручного управления Уставкой	68
10.6 Автоматическая настройка ПИД-регуляторов 7 10.6.1 Общие правила проведения автонастройки ПИД-регулятора 7 10.6.2 Порядок проведения Автонастройки Регулятора 7 10.6.3 Индикация параметров автонастройки 7 10.6.4 Остановка автонастройки 7 10.7 Аварийные ситуации и их возможные причины 7 10.7.1 Критическая АВАРИЯ 7	10.	5 Режи	им ручного управления выходной мощностью	70
10.6.1 Общие правила проведения автонастройки ПИД-регулятора 7 10.6.2 Порядок проведения Автонастройки Регулятора 7 10.6.3 Индикация параметров автонастройки 7 10.6.4 Остановка автонастройки 7 10.7 Аварийные ситуации и их возможные причины 7 10.7.1 Критическая АВАРИЯ 7	10.	6 Авто	матическая настройка ПИД-регуляторов	70
10.6.2 Порядок проведения Автонастройки Регулятора		10.6.1	Общие правила проведения автонастройки ПИД-регулятора	70
10.6.3 Индикация параметров автонастройки7 10.6.4 Остановка автонастройки7 10.7 Аварийные ситуации и их возможные причины		10.6.2	Порядок проведения Автонастройки Регулятора	71
10.6.4 Остановка автонастройки7 10.7 Аварийные ситуации и их возможные причины7 10.7.1 Критическая АВАРИЯ		10.6.3	Индикация параметров автонастройки	73
10.7 Аварийные ситуации и их возможные причины7 10.7.1 Критическая АВАРИЯ		10.6.4	Остановка автонастройки	73
10.7.1 Критическая АВАРИЯ	10.	7 Авар	рийные ситуации и их возможные причины	75
		10.7.1	Критическая АВАРИЯ	75
10.7.2 Некритическая АВАРИЯ7		10.7.2	Некритическая АВАРИЯ	75

10.7.3 Выяснение причины АВАРИИ	75
10.8 Информационные сообщения на цифровых индикаторах	76
10.9 Принудительная перезагрузка прибора	76
11 Техническое обслуживание	77
12 Маркировка	77
13 Транспортирование и хранение	78
14 Комплектность	78
Приложение А. Габаритные размеры	79
Приложение Б. Подключение прибора	80
Приложение В. Программируемые параметры	81
Приложение Г. Некоторые типы первичных преобразователей	86
Приложение Д. Подключение термопреобразователей сопротивления по дву	хпроводной
схеме	
Приложение Е. Цифровая фильтрация и коррекция измерений	89
Приложение Ж. ПИД-регулятор и параметры его настройки	
Приложение И. Краткое описание исполнений ОВЕН ТРМ151	
Приложение К. Юстировка датчика положения задвижки	
Лист регистрации изменений	
······································	

Настоящее Руководство по эксплуатации предназначено для ознакомления обслуживающего персонала с устройством, принципом действия, конструкцией, работой и техническим обслуживанием измерителя-ПИД-регулятора ОВЕН ТРМ151-03 (в дальнейшем по тексту именуемого прибор).

Настоящее Руководство по эксплуатации распространяется на приборы исполнений, изготовленных согласно ТУ У 33.2-35348663-001:2008.

Прибор изготавливается в нескольких исполнениях, отличающихся конструктивным исполнением и видом встроенных выходных устройств (ВУ) для управления исполнительными механизмами. Информация об исполнении указана в коде названия прибора:

	OBEH TPM151-X.XX.03
Конструктивное исполнение]]
Тип встроенного выходного устройства 1	
Тип встроенного выходного устройства 2	2

Конструктивное исполнение:

Н – корпус настенного крепления с размерами 105х130х65 мм и степенью защиты корпуса IP44.

Щ1 – корпус щитового крепления с размерами 96х96х70 мм и степенью защиты со стороны лицевой панели IP54.

Габаритные чертежи корпусов различных типов приведены в Приложении А.

Тип встроенного выходного устройства 1 (2):

- Р реле электромагнитные;
- К оптопара транзисторная n-p-n-типа;
- С оптопара симисторная;
- Т выход для управления внешним твердотельным реле.

Внимание! Прибор OBEH TPM151-03 может быть переконфигурирован под прибор другого исполнения OBEH TPM151-xx. Краткое описание исполнений прибора OBEH TPM151 приведено в Приложении И. Изменение конфигурации осуществляется с помощью программы «Конфигуратор TPM151» на ПК (см. п. 8).

Кроме того, на базе OBEH TPM151-03 можно создать нестандартную конфигурацию, содержащую элементы разных исполнений. За подробной консультацией обращайтесь в группу технической поддержки OBEH.

Используемые аббревиатуры:

АНР – автонастройка регулятора,

ВУ – выходное устройство,

ИМ – исполнительный механизм,

НСХ – номинальная статическая характеристика,

ПК – персональный компьютер,

ТП –преобразователь термоэлектрический,

ТС – термопреобразователь сопротивления,

ТСМ – термопреобразователь сопротивления медный,

ТСП – термопреобразователь сопротивления платиновый,

ЦАП – цифроаналоговый преобразователь,

ЦИ – цифровой индикатор.

1 Назначение прибора

1.1 Прибор предназначен для построения автоматических систем контроля и регулирования производственными технологическими процессами в различных областях промышленности, в сельском и коммунальном хозяйстве.

1.2 Прибор выполняет следующие функции:

- измерение одной или двух физических величин, контролируемых входными первичными измерительными преобразователями;
- цифровая фильтрация для уменьшения влияния на результат измерения промышленных импульсных помех;
- коррекция измеренных величин для устранения погрешностей первичных преобразователей;
- отображение результатов измерений или вычислений на встроенном светодиодном четырехразрядном цифровом индикаторе (ЦИ);
- регулирование одной измеренной физической величины по ПИД-закону;
- управление 3-х позиционными ИМ;
- изменение уставки регулируемой величины по заданной технологической программе, а также как функции другой величины;
- формирование аварийного сигнала при обнаружении неисправности первичных преобразователей с отображением его причины на цифровом индикаторе;
- формирование аварийного сигнала при выходе регулируемой величины за допустимые пределы;
- отображение на встроенном светодиодном цифровом индикаторе текущих значений параметров технологической программы и мощности, подаваемой на исполнительный механизм;
- формирование команды ручного управления исполнительным механизмом с клавиатуры прибора;
- передача в сеть RS-485 текущих значений любых измеренных или вычисленных величин, а также выходного сигнала регулятора и параметров программы технолога;
- изменение значений программируемых параметров прибора с помощью клавиатуры управления на его передней панели;
- изменение значений параметров с помощью компьютерной программы-конфигуратора при связи с ПК по RS-485;
- сохранение заданных программируемых параметров в энергонезависимой памяти при отключении напряжения питания прибора OBEH TPM151-03.

2 Технические характеристики и условия эксплуатации

2.1 Технические характеристики прибора

Основные технические характеристики прибора приведены в таблицах 2.1, 2.2, 2.3.

Таблица 2.1 – Общие характеристики прибора

Наименование	Значение
Диапазон напряжений питания переменного тока, В	от 90 до 245 частотой от 47 до 63 Гц
Потребляемая мощность, ВА, не более	6
Количество входов для подключения датчиков	2
Время опроса одного канала, с, не более	0,3
Количество ВУ	2
Интерфейс связи с ПК	RS-485
Протокол передачи данных по RS-485	OBEH
Скорость передачи данных, бит/с:	2400, 4800, 9600, 14400, 19200, 28800,
	38400, 57600, 115200
Габаритные размеры, мм:	
- корпуса Н;	105x130x65
- корпуса Щ1	96x96x70
Степень защиты:	
- корпуса Н;	IP44
- корпуса Щ1	IP54
Масса прибора, кг, не более	0,5
Средний срок службы, лет, не более	12
Средняя наработка на отказ, ч	50000

Таблица 2.2 – Входные первичные преобразователи

Тип датчика	Диапазон измерений	Значение единицы младшего разряда, ед. изм. ¹⁾	Предел основной приведенной погрешности. %
Термопреобразов	ватели сопротивлен	ия с НСХ по ДТСУ ГО	CT 6651
Cu 50 (α=0,00426 °C ⁻¹)	от –50 до 200 °C	0,1	±0,25
50 M (α=0,00428 °C ⁻¹)	от –180 до 200 °С	0,1; 1,0	
Pt 50 (α=0,00385 °C ⁻¹)	от –200 до 750 °C	0,1; 1,0	
50 Π (α=0,00391 °C ⁻¹)	от –200 до 750 °C	0,1; 1,0	
Cu 100 (α=0,00426 °C ⁻¹)	от –50 до 200 °C	0,1	
100 M (α=0,00428 °C ⁻¹)	от –180 до 200 °С	0,1; 1,0	
Pt 100 (α=0,00385 °C ⁻¹)	от –200 до 750 °C	0,1; 1,0	
100 Π (α=0,00391 °C ⁻¹)	от –200 до 750 °C	0,1; 1,0	
100 H (α=0,00617 °C ⁻¹)	от –60 до 180 °C	0,1	
Cu 500 (α=0,00426 °C ⁻¹)	от – 50 до 200 °C	0,1	
500M (α=0,00428 °C ⁻¹)	от - 180 до 200 °C	0,1;1,0	
Pt 500 (α=0,00385 °C ⁻¹)	от -200 до 650 °C	0,1;1,0	
500 Π (α=0,00391 °C ⁻¹)	от -200 до 650 °C	0,1;1,0	
500 H (α=0,00617 °C ⁻¹)	от – 60 до 180 °C	0,1	
Cu 1000 (α=0,00426 °C ⁻¹)	от – 50 до 200 °C	0,1	
1000M (α=0,00428 °C ⁻¹)	от -180 до 200 °C	0,1;1,0	
Pt 1000 (α=0,00385 °C ⁻¹)	от -200 до 650 °C	0,1;1,0	
1000П (α=0,00391 °C ⁻¹)	от -200 до 650 °C	0,1;1,0	
Ni 1000 (α=0,00617 °C ⁻¹)	от -60 до 180 °C	0,1	

Окончание	таблицы 2.2
-----------	-------------

Тип датчика	Диапазон измерений	Значение единицы младшего	Предел основной приведенной		
	nomoportuni	разряда, ед. изм. "	погрешности, %		
Термопреобраз	ователи сопротивл	<u>ения с НСХ по ДТСУ 2</u>	2858 2)		
50M, 100 M, 500 M, 1000 M	от – 190 до 200	0,1; 1,0	±0,25		
W ₁₀₀ = 1,428					
50П, 100 П W ₁₀₀ = 1,391	от – 200 до 750	0,1; 1,0			
500 П, 1000 П W ₁₀₀ = 1,391	от – 200 до 650	0,1; 1,0			
Термопреобраз	ователи сопротивл	ения с НСХ по ГОСТ 6	651 ²⁾		
ТСМ с R ₀ = 53 и W ₁₀₀ = 1,4260	от –50 до 200 °C	0,1	±0,25		
Преобразоват	ели термоэлектриче	еские с НСХ по ДСТУ	2837		
TXK (L)	от –200 до 800 °С	0,1	±0,5		
ТЖК (J)	от –200 до	1	±0,25 ³⁾		
	1200 °C				
THH (N)	от –200 до	1			
	1300 °C				
TXA (K)	от –200 до	1			
	1300 °C				
ТПП 10 (S)	от 0 до 1750 °C	1			
ΤΠΠ 13 (R)	от 0 до 1750 °С	1			
ТПР (В)	от 200 до 1800 °C	1			
TBP (A-1)	от 0 до 2500 °C	1			
TBP (A-2)	от 0 до 1800 °C	1			
TBP (A-3)	от 0 до 1800 °C	1			
TMK (T)	от –200 до 400 °С	0,1			
Унифицированные сиг	налы постоянного і	напряжения и тока по	FOCT 26.011		
Ток от 0 до 5 мА	от 0 до 100 %	0,1	±0,25		
Ток от 0 до 20 мА	от 0 до 100 %	0,1			
Ток от 4 до 20 мА	от 0 до 100 %	0,1			
Напряжение от 0 до1 В	от 0 до 100 %	0,1			
Напряжение	от 0 до 100 %	0,1			
от <i>–</i> 50,0 до +50,0 мВ					
Датчики положения задвижек					
резистивный (0900 Ом)	0100	1	±0,25		
резистивный (02 кОм)	0100	1			
¹⁾ – При значении индицируемого измеренного параметра выше 999,9 и ниже минус 199,9 цена					
единицы младшего разряда рав	ina i °C. Out otmouou d Viroqui		иформационный		
– далпый пормативный докум	ептотменен в экраин	IC M MONUTID SYCICH KOK M	пформационным		
³⁾ – Основная приведенная погрешность без схемы компенсации температуры холодного спая.					

³⁾ – Основная приведенная погрешность без схемы компенсации температуры холодного спая.

Наименование ВУ (обозначение типа)	Технические характеристики	Значение
Реле электромагнитное (Р)	Ток нагрузки, не менее	4 A
	Напряжение нагрузки	220 В 50 Гц
	переменного тока, не менее	и соѕ
Оптопара транзисторная	Ток нагрузки, не менее	400 мА
n-p-n-типа (К)	Напряжение постоянного тока, не менее	60 B
Оптопара симисторная (С)	В режиме управления внешним симистором:	
	ток (при длительности импульса не более	1 A
	5 мс и частоте 100 Гц), не менее	
	В режиме коммутации нагрузки:	
	ток нагрузки, не менее	50 мА
	действующее напряжение, не более	600 B
Выход для управления	Выходное напряжение постоянного тока	от 4 до 6 В
внешним твердотельным реле (T)	Выходной ток, не более	100 мА

Таблица 2.3 – Выходные устройства

По эксплуатационной законченности приборы относятся к изделиям второго порядка.

Время установления рабочего режима приборов после подачи на него напряжения питания не более 15 мин при работе с ТП и не более 5 мин при работе с остальными первичными измерительными преобразователями.

Электрическая прочность изоляции обеспечивает в течение времени не менее 1 мин отсутствие пробоев и поверхностного перекрытия изоляции токоведущих цепей относительно корпуса и между собой при напряжениях в соответствии с ДСТУ IEC 61010-1.

Электрическое сопротивление изоляции токоведущих цепей относительно корпуса приборов и между собой в соответствии с ГОСТ 12997:

- 40 МОм при температуре (20 ± 3) °С и относительной влажности до 80 %;
- 10 МОм при температуре (50 ± 3) °С и относительной влажности до 80 %.

2.2 Условия эксплуатации

Прибор эксплуатируется при следующих условиях:

- закрытые взрывобезопасные помещения без агрессивных паров и газов;
- температура окружающего воздуха от 1 до 50 °C;
- верхний предел относительной влажности воздуха 80 % при 25 °С и более низких температурах без конденсации влаги;
 - атмосферное давление от 86 до 106,7 кПа.

По устойчивости к климатическим воздействиям при эксплуатации прибор соответствует группе исполнения В4 по ГОСТ 12997.

По устойчивости к механическим воздействиям при эксплуатации прибор соответствует группе исполнения N1 по ГОСТ 12997.

Приборы по требованиям к электромагнитной совместимости относятся к оборудованию класса A по ДСТУ IEC 61326-1.

3 Устройство и работа прибора

3.1 Описание прибора

В данном разделе приведены программируемые параметры для каждого элемента структурной схемы. Задание значений параметров удобнее всего производить с помощью программы «Конфигуратор TPM151» (см. п. 8).

Возможно также программирование с помощью кнопок на лицевой панели прибора (см. п. 9).

3.1.1 Схема прибора

Структурная схема прибора представлена на рисунке 3.1.

Рисунок 3.1 – Структурная схема прибора

Прибор – одноканальный, осуществляет пошаговое регулирование трех- позиционным ИМ (задвижкой) с датчиком положения или без него.

3.1.2 Канал регулирования

Канал регулирования (далее Канал) предназначен для регулирования одной физической величины (температуры, давления и т. д.) по результатам измерения датчиком, подключенным ко Входу 1.

Возможно также регулирование вычисленной величины (влажности, среднего значения и т.д.) из значений, измеренных на Входе 1 и Входе 2. При этом регулирование производится без использования датчика положения задвижки.

Для регулирования в Канале используется исполнительный механизм (ИМ) типа «нагреватель», который позволяет увеличивать значение регулируемой величины. Управление ИМ производится при помощи выходного элемента, выбранного пользователем при заказе (э/м реле, оптотранзистор, оптосимистор, ЦАП).

Примечание – Вы можете бесплатно заказать конфигурацию OBEH TPM151-03 для управления ИМ типа «холодильником» (уменьшает значение регулируемой величины). Для этого обратитесь к специалистам по адресу trm151@owen.ru.

Фрагмент экранного интерфейса разъясняющий путь к устанавливаемым параметрам в перечне параметров программы "Конфигуратор ТРМ 151" С Конфигурация ТРМ 151 (Имя не задано)

Параметр

😑 🦲 Параметры прибора

- · · · · ·

9

3.1.3 Пошаговое регулирование. Программа технолога

Прибор предназначен для пошагового управления технологическим процессом, который может включать следующие стадии (на примере регулирования температуры):

- поддержание заданного значения (уставки) температуры;
- нагрев до заданного значения температуры или в течение заданного времени;

- охлаждение до заданного значения температуры или в течение заданного времени.

При нагреве можно задать скорость нагрева или мощность, подаваемую на исполнительный механизм.

Охлаждение осуществляется путем отключения нагревателя, при этом можно ограничить скорость охлаждения.

Последовательность этапов технологического процесса будем называть **Программой** технолога (или просто **Программой**), а каждый этап – Шагом **Программы технолога**.

Пример Программы технолога, представленной в виде графика изменения уставок во времени, показан на рисунке 3.2. Всего в приборе можно задать до 12 независимых Программ технолога по 10 Шагов каждая.

Рисунок 3.2 – Пример Программы технолога для прибора

Примечание – Пользователь может создать Программу более чем из 10 Шагов или Программу, работающую по бесконечному циклу, за счет использования «шага с переходом» (см. ниже).

Для каждого Шага Программы технолога задаются следующие параметры:

- Уставка для регулируемых величины (см. п. 3.1.9),
- тип установки (с коррекцией по графику или без нее);
- тип Шага,
- длительность Шага или условие перехода на следующий Шаг.

3.1.3.1 Тип Шага Программы технолога

Шаг Программы может быть трех типов:

- «обычный шаг»;
- «шаг с переходом»;
- «конец программы».

Для «обычного шага» и «шага с переходом» задаются уставки и условия перехода на следующий Шаг, для «конца программы» эти параметры задавать не нужно.

«Шаг с переходом» позволяет по окончании данного Шага перейти не к следующему за ним Шагу, а к Программе и Шагу, которые указаны параметрами nU.Pr и nU.St.

Используя «шаг с переходом», Вы можете создать:

- Программу, состоящую более чем из 10 Шагов (рисунок 3.3, б, г);
- Программу, работающую по бесконечному циклу (рисунок 3.3, в, г).

Примечание – Остановка Программы, работающей по бесконечному циклу, возможна только при помощи кнопок на лицевой панели прибора.

Нециклическая Программа в приборе (рисунок 3.3, а, б) состоит из последовательности «обычных шагов» и «шагов с переходом», которая заканчивается Шагом типа «конец программы».

Рисунок 3.3 – Примеры Программ, которые можно реализовать с помощью различных типов Шагов:

а) программа из 9 Шагов и «конца программы»;

б) программа из 11 Шагов и «конца программы»;

в) программа из 8 Шагов, работающая по бесконечному циклу;

г) программа из 12 Шагов (последние 3 Шага повторяются по бесконечному циклу)

3.1.3.2 Условия перехода на следующий Шаг

В приборе возможны четыре варианта логики перехода на следующий Шаг:

 «по значению» – по достижении физической величиной значения, заданного параметром SP.PS:

2) «по времени» – по истечении Длительности шага;

«по значению И времени» – при выполнении одновременно двух первых условий;

4) «по значению ИЛИ времени» – при выполнении хотя бы одного из двух первых условий.

Логика перехода на следующий Шаг задается параметром LG.PS.

Длительность Шага при переходе «по времени» задается параметром t.PS.

При переходе «по значению» текущее значение физической величины (значение с Вычислителя) сравнивается с заданным **SP.PS** и, если оно стало больше **SP.PS** (или меньше, это определяется параметром **Sn.PS**), происходит переход на следующий Шаг.

🚵 Конфигурация ТРМ151 (Иня не задано)	
🚊 🥮 Паранетры прибора	
😑 🧰 Програнны технолога	
Iporpaneia Nº	
💞 Логика перехода на следующий шаг	LG.PS
Условие при переходе "по порог. значению"	Sn.PS
Авс Значение порога для перехода	SP.P5
Авс Длительность шага	L.PS

3.1.3.3 Шаги ОСТАНОВ и АВАРИЯ

Два последних Шага (№ 9 и № 10) последней Программы технолога (№ 12) зарезервированы в приборе для описания состояний прибора **АВАРИЯ** и **СТОП** (см. п. 3.2.1.3). Таким образом, последняя Программа оказывается короче других на 2 Шага.

Для описания состояния **СТОП (STOP)** в приборе зарезервирован Шаг № 10 Программы № 12. На этом Шаге пользователь может (см. параметры Уставки, п. 3.1.9):

- отключить регулирование, задав нулевое значение мощности, подаваемой на Исполнительный механизм;
- подавать фиксированное значение мощности на ИМ;
- поддерживать регулируемую величину на уровне, заданном Уставкой.

Для описания состояния **АВАРИЯ (FAIL)** в приборе зарезервирован Шаг № 9 Программы № 12. На этом Шаге пользователь также может задать фиксированное нулевое или ненулевое значение мощности на ИМ.

На заводе-изготовителе для Шагов № 10 («СТОП») и № 9 («АВАРИЯ») Программы № 12 установлено постоянное нулевое значение мощности, подаваемой на Исполнительный механизм. Пользователь может переконфигурировать эти специализированные Шаги по своему усмотрению.

3.1.3.4 Масштаб времени в Программах технолога

Параметром Масштаб времени пользователь может выбрать единицы, в которых будет задаваться длительность Шага в Программе: «часы/минуты» или «минуты/секунды». Данный параметр является общим для всех Программ.

Примечание – Задание длительности Шага одновременно в часах, минутах и секундах в приборе невозможно.

Пример. Задана Длительность шага t.PS «30.24».

Если Масштаб времени **t.SCL** – «часы/минуты», Шаг будет длиться 30 ч 24 мин 00 с. Если Масштаб времени **t.SCL** – «минуты/секунды», Шаг будет длиться 30 мин 24 с.

3.1.3.5 Разрешение запуска Программы технолога

Запуск любой Программы можно разрешить или запретить, установив соответствующее значение параметра Разрешение запуска программы.

Рекомендуется запретить запуск всех Программ, которые не используются или не сконфигурированы.

3.1.4 Измерительные входы

Измерительные Входы прибора являются универсальными, т.е. к ним можно подключать любые Первичные преобразователи (Датчики) из перечисленных в таблице 2.2. К Входам прибора можно подключить одновременно два Датчика разного типа в любых сочетаниях.

В качестве Датчиков могут быть использованы:

- термопреобразователи сопротивления;
- преобразователи термоэлектрические (ТП);
- активные преобразователи с выходным аналоговым сигналом в виде постоянного напряжения или тока;
- датчики положения исполнительных механизмов.

Для измерения температуры чаще всего используются термопреобразователи сопротивления или TП (см. Приложение Г).

Активные преобразователи с выходным аналоговым сигналом в виде постоянного напряжения (-50...50 мВ, 0...1 В) или тока (0...5 мА, 0...20 мА, 4...20 мА) могут быть использованы для измерения как температуры, так и других физических величин: давления, расхода, уровня и т.п.

Датчики положения предназначены для определения текущего положения (степени открывания или закрывания) запорно-регулирующих клапанов, задвижек, шаберов и т.п. при регулировании технологических параметров.

Наиболее часто в промышленности применяются датчики положения резистивного типа.

3.1.4.1 Тип датчика

Для каждого Входа необходимо задать тип подключенного к нему Датчика, выбрав его из предложенного списка (список соответствует таблице 2.2). Если пользователь не использует какой-либо Вход, необходимо установить значение параметра **in-t** «Датчик отключен».

Внимание! При неправильном задании значения параметра Тип датчика прибор будет производить некорректные измерения!

3.1.4.2 Периодичность опроса Датчиков

В приборе существует возможность установить период опроса Датчика на каждом Входе. Этот параметр определяет период тактов регулирования. Это означает, что изменение мощности, подаваемой на Исполнительный механизм, будет производиться с частотой, равной частоте опроса Входов.

Период опроса задается параметром itrL в секундах с точностью до 0,1 с.

ВНИМАНИЕ! Не допускается задавать значение периода опроса датчика менее 0,3 с.

3.1.4.3 Этапы обработки сигнала с Датчика на Входе

Сигналы, полученные от Датчиков, прибор преобразует (по данным HCX) в текущие цифровые значения. Далее в процессе обработки сигналов осуществляются:

- цифровая фильтрация сигнала от помех;
- коррекция измерительной характеристики Датчика;
- автоматическая коррекция показаний прибора по температуре свободных концов ТП;
- масштабирование шкалы измерения (для Датчиков с аналоговым выходным сигналом).

Параметры цифровых фильтров, установленные на заводе-изготовителе, в большинстве случаев удовлетворяют условиям эксплуатации прибора. Если в процессе работы пользователь обнаружит сильное влияние внешних импульсных помех на результаты измерений, заводские значения параметров цифровых фильтров могут быть изменены (см. Приложение E).

Заводские значения параметров коррекции измерительной характеристики Датчика (см. Приложение E) можно изменять только в технически обоснованных случаях, так как при этом изменятся стандартные метрологические характеристики прибора.

3.1.4.4 Автоматическая коррекция показаний прибора по температуре свободных концов TП

Эта коррекция обеспечивает правильные показания прибора при изменении температуры окружающей его среды. Датчик температуры свободных концов ТП расположен внутри прибора у клеммных контактов.

Вконфигурацика ТРМ151 (Иня не задано)
 Паранетры прибора
 Входы
 Входы
 Входы № **
 Учении коррекции по температуре свободных концов ТП Сј-.С

Коррекция включается/выключается параметром Сј-.С.

Отключение этого вида коррекции может быть необходимо, например, при проведении поверки прибора. При отключенной коррекции температура свободных концов ТП принимается равной 0 °С, и ее возможные изменения в расчет не принимаются.

3.1.4.5 Масштабирование шкалы измерения для активных преобразователей с аналоговым выходным сигналом

При работе с активными Датчиками, выходным сигналом которых является напряжение или ток, в приборе осуществляется масштабирование шкалы измерения. После масштабирования контролируемые физические величины отображаются непосредственно в еличника их измерения (атмосферах и изполаская

Кон	фигурация ТРМ151 (Имя не задано)	
8	Параметры прибора	
	Входы	
T		
T	Авс Нижняя граница изменения активного датчика	Ain.L
THE	Авс Верхняя граница изменения активного датчика	Ain.H

единицах их измерения (атмосферах, килопаскалях, метрах и т.д.).

- Для каждого такого Датчика необходимо установить диапазон измерения:
- нижняя граница диапазона измерения задается параметром Ain.L и соответствует минимальному уровню выходного сигнала Датчика;
- верхняя граница диапазона измерения задается параметром Ain.H и соответствует максимальному уровню выходного сигнала Датчика.

Дальнейшая обработка сигналов Датчика осуществляется в заданных единицах измерения по линейному закону (прямо пропорциональному при **Ain.H > Ain.L** или обратно пропорциональному при **Ain.H < Ain.L**).

Пример – При использовании датчика с выходным током 4...20 мА, контролирующего давление в диапазоне 0...25 атм., в параметре Ain.L задается значение 00,00, а в параметре Ain.H – значение 25,00 (см. рисунок 3.4). После этого обработка и отображение показаний будет производиться в атмосферах.

Рисунок 3.4 – Пример задания диапазона измерения активного датчика

3.1.5 Вычислитель

Вычислитель производит вычисление физической величины по одному или нескольким входным значениям. К Вычислителю можно подключить один или два измерительных входа прибора.

Данные с Вычислителя передаются одновременно Регулятору и Инспектору.

Для Вычислителя задаются следующие параметры:

- тип вычислителя (формула для вычисления);
- количество используемых Входов;
- количество знаков после десятичной точки;
- весовые коэффициенты измерительных входов при расчете взвешенной суммы.

3.1.5.1 Тип Вычислителя

Вычислитель производит **одну** математическую операцию с входными величинами. Типы Вычислителей (формулы для вычисления) и количество входных величин, используемых в этих формулах, представлены в таблице 3.1.

📸 Конфигурация ТРМ151 (Имя не задано)	
🖻 🛄 Параметры прибора	
🖃 🧰 Вычислители	
Вход № ** вычислителя	
Авс Весовой коэф. для формулы "Взвешенная сумма"	SCA
- 🍄 Формула Вычислителя	CAL.t
Авс Кол-во аргунентов вычислителя	n.in.C

Таблица 3.1 – Тип Вычислителя и количество используемых им входов

Символы на ЦИ2*	Тип Вычислителя	Количество входов, используемых Вычислителем
rEPL	Повторитель	1
5U	Взвешенная сумма	1 или 2
r AL	Частное	2
59r	Квадратный корень	1
ŁoP	Максимум	1 или 2
bott	Минимум	1 или 2
<i>R⊢</i> ĭF	Среднее арифметическое	1 или 2
гH	Вычислитель влажности	2
FF	Вычислитель отключен	-
* значени	ие параметра CAL.t при программировани	и кнопками на пицевой панели прибора

 Повторитель просто передает Регулятору значение, измеренное на Входе 1, не производя математических действий.

Установите значение Повторитель, если регулируемая физическая величина измеряется на Входе 1 и не требует никаких дополнительных вычислений. Пример – регулирование температуры, которая измеряется датчиком температуры.

Взвешенная сумма вычисляется по формуле:

$S = Д1 \times K1 + Д2 \times K2,$

где Д1 и Д2 – значения, измеренные на входах 1 и 2; К1 и К2 – весовые коэффициенты для входов 1 и 2.

Весовые коэффициенты задаются параметром SCA и в других формулах не учитываются.

С помощью Взвешенной суммы вычисляется **разность** двух измеренных величин. Для этого нужно задать одному входу весовой коэффициент «– 1», а другому «+1».

- Частное вычисляет результат деления значения с первого входа на значение со второго входа.

- Квадратный корень извлекается из значения, измеренного на Входе 1.

 Функции Минимум и Максимум передают наименьшее и наибольшее из входных значений.

 Вычислитель влажности производит расчет влажности психрометрическим методом по температурам сухого и влажного термометров. При этом на Входе 1 измеряется температура сухого термометра, на Входе 2 – температура влажного термометра.

 Значение Вычислитель отключен пользователь может установить для отключения Канала регулирования. В этом случае ОВЕН ТРМ151-03 можно использовать как двухканальный измеритель.

3.1.5.2 Количество знаков после десятичной точки

Вычисленная физическая величина может быть отображена на 4-х разрядном индикаторе ЦИ1 с различной точностью. В параметре **dP** пользователь может задать количество знаков, отображаемых после десятичной точки.

🖂 🝰 Конфигурация ТРМ151 (Имя не задано)		
😑 🦳 Параметры прибора		
- Вычислители		
Вход № •• вычислителя		
Авс Кол-во знаков после дес-ой точки на индикаторе		dP

По умолчанию установлено значение **dP**, равное 2.

Если число слишком велико и не помещается на ЦИ, прибор «отрезает» последние цифры, например: при **dP** = 2 число «485,84» отобразится как «485,8». Просмотр непоместившихся цифр возможен с помощью кнопки

3.1.6 Регулятор

Регулятор — это программный модуль, отвечающий за поддержание измеренной или вычисленной величины на заданном уровне, называемом Уставкой.

 Регулятор сравнивает значение, пришедшее с Вычислителя, с Уставкой и вырабатывает выходной сигнал, направленный на уменьшение их рассогласования.
 Выходной сигнал Регулятора в приборе поступает на блок управления ИМ.

3.1.6.1 ПИД-регулятор

ПИД-регулятор (пропорционально-интегрально-дифференциальный регулятор) выдает значение выходной мощности, направленное на уменьшение отклонения текущего значения регулируемой величины от Уставки.

При управлении ИМ типа «нагреватель» значение выходной мощности находится в диапазоне от «0» до «1» (или от 0 до 100 %).

ПИД-регулирование является наиболее точным методом поддержания контролируемой величины. Однако для эффективной работы ПИД-регулятора необходимо подобрать для конкретного объекта регулирования ряд коэффициентов.

Задача настройки ПИД-регулятора довольно сложная, но она может быть выполнена в автоматическом режиме. Принцип работы и параметры ПИД-регулятора приведены в Приложении Ж.

Об автонастройке ПИД-регулятора см. п. 10.6 и Приложение Ж.

3.1.6.2 Ограничение диапазона и скорости изменения выходной мощности Регулятора (только для ПИД-регулятора)

Значения выходной мощности ПИДрегулятора находятся в диапазоне от «0» до «1» (или от 0 до 100%). В некоторых случаях возникает необходимость ограничения выходной мощности сверху или снизу.

P.rES
P.Upr
P.min

Пример. В климатокамере нельзя допустить, чтобы нагреватель работал менее чем на 20 % своей мощности. Для выполнения этого условия нужно установить Минимальную выходную мощность P.min «20.0».

Ограничение диапазона выходной мощности Регулятора задается двумя параметрами: максимальное значение **P.UPr** и минимальное **P.min**. Эти параметры задаются в процентах от максимальной мощности, которую можно подать на Исполнительный механизм. Если Регулятор выдает значение мощности, находящееся за пределами заданного диапазона, оно принимается равным **P.UPr** или **P.min**, соответственно.

Ограничение скорости роста выходной мощности Регулятора необходимо для безударного включения Исполнительного механизма. Максимальная скорость изменения выходной мощности задается параметром **P.rES** в %/мин.

3.1.7 Управление трехпозиционным ИМ

Прибор ТРМ151-03 управляет трехпозиционным исполнительным механизмом (задвижкой) при помощи сигналов трех типов: «больше», «меньше», «стоп». Для управления таким ИМ необходимо два Выходных элемента.

Схемы подключения ИМ к Выходным элементам прибора даны в Приложении Б.

ТРМ151 может управлять трехпозиционным ИМ с датчиком положения или без него.

Работа с датчиком положения ИМ показана на рисунке 3.5,а.

ТРМ151 может работать с датчиками положения ИМ двух типов: резистивными или токовыми (см. Приложение К).

В конфигурации прибора датчик положения ИМ должен быть подключен к Входу прибора №2.

Работа без датчика положения ИМ показана на рисунке 3.5,б.

В этом случае положение ИМ вычисляется прибором по математической модели. Для того, чтобы математическая модель более близко соответствовала реальности, необходимо как можно точнее задать параметры реального ИМ:

- полное время хода ИМ (параметр **tP.H**);
- начальное положение ИМ (параметр LSP);
 - время выборки люфта (параметр **tFP**).

Прибор по этим данным вычисляет текущее положение задвижки в любой момент времени.

Примечание – Неточное соответствие математической модели и реальной задвижки, а также неточное задание начального положения может привести к накоплению рассогласования. В результате этого в крайних положениях может быть подан сигнал на открытие или на закрытие, когда реальная задвижка уже полностью открыта или закрыта. Это может повлечь за собой поломку оборудования, поэтому не допускается использование задвижек без датчика положения без концевых выключателей.

Следует учитывать, что управление задвижкой без датчика положения менее точно и приводит к накоплению ошибки.

Сонфигурация ТРМ151 (Имя не задано)	
📕 Параметры прибора	
😑 🧰 Блоки управления исполнительными механизмами	
🗄 🚫 БУИМ №++	
Авс Зона нечувствительности для задвижек (%)	db.F
- ¥ Наличие датчика положения задвижки	dLP
Авс Мин. время остановки задвижки	t.StP
Авс Мин. время работы задвижки	tP.L
Авс Полное время хода задвижки	tP.H
Авс Время выборки люфта задвижки	tFP
Авс Исходное положение задвижки в %	LSP
	Сонфигурация ТРМ151 (Имя не задано) Паранетры прибора

Рисунок 3.5 – Управление 3-х позиционным ИМ: а) с датчиком положения; б) без датчика положения

3.1.8 Выходные элементы

Прибор имеет два встроенных Выходных элемента. ВЭ1 и ВЭ2 программно привязаны к Регулятору для управления 3-х позиционными ИМ (задвижкой). ВЭ1 подает управляющий сигнал для открытия задвижки, ВЭ2 на закрытие.

Для управления 3-х позиционными ИМ применяются дискретные ВЭ (электромагнитное реле, транзисторная или симисторная оптопары, выход для управления твердотельным реле).

3.1.9 Уставка

Уставка – это значение, которое требуется поддерживать с помощью Регулятора в данный момент времени. Уставка вместе с текущим значением регулируемой величины подается на вход Регулятора.

На каждом Шаге Программы технолога для каждого Регулятора задаются следующие параметры Уставки:

- тип Уставки;
- значение Уставки;
- скорость выхода на Уставку;
- допустимые границы изменения Уставки для работы в режиме Ручного управления (см. п. 10.4).

3.1.9.1 Тип Уставки

В приборе в качестве Уставки можно задавать:

- значение регулируемой физической величины (тип «значение»);
- значение выходной мощности Регулятора (тип «мощность»).
- Тип Уставки задается параметром **P.-SP**.

Задание Уставки типа «мощность» бывает необходимо на некоторых стадиях техпроцесса, когда контролировать физический параметр системы не требуется или невозможно. В этом

случае пользователь может задать фиксированное значение мощности, которое будет подаваться на Исполнительный механизм. Регулирования при этом происходить не будет.

3.1.9.2 Значение Уставки

Значение Уставки типа «значение» задается в единицах регулируемой величины и должно находиться в диапазоне измерения Датчика.

Значение Уставки типа «мощность» задается в относительных единицах и может принимать значения от «0» до «1».

3.1.9.3 Скорость выхода на Уставку

В приборе можно ограничить скорость выхода на Уставку.

Эта функция используется в тех случаях, когда регулируемая величина должна плавно, с заданной скоростью, возрастать или уменьшаться на данном Шаге Программы:

- в течение всего Шага (см. рисунок 3.6, а);
- в течение части Шага до достижения Значения уставки, далее осуществляется поддержание достигнутого значения Уставки (см. рисунок 3.6, б, в).

Рисунок 3.6 – Задание скорости выхода на Уставку

В начале Шага Уставка принимает значение, равное текущему значению регулируемой величины (T₀), и сразу начинает изменяться с заданной скоростью.

Величина T₀ - это **Значение уставки** на предыдущем Шаге или начальное значение, если Шаг - первый. Например, если регулируется температура, то при старте Программы T₀ примет значение температуры окружающей среды и начнет расти (или уменьшаться) с заданной скоростью от этого значения.

Параметр Скорость выхода на уставку LF.LU задается в единицах регулируемой величины в минуту. Если задать параметру LF.LU значение «0», то скорость принимается равной бесконечности, т. е. Уставка мгновенно достигает значения, заданного параметром SP.LU.

3.1.10 Сетевой интерфейс RS-485

Прибор имеет встроенный сетевой интерфейс RS-485, который предоставляет следующие основные возможности:

конфигурирование прибора с ПК;

регистрация на ПК параметров текущего состояния.

Для работы прибора в сети RS-485 необходимо установить его сетевые настройки. В одной сети могут находиться несколько приборов, подключенных к одному ПК. Для обеспечения корректной работы в этом случае сетевые параметры всех приборов одной сети должны быть одинаковы.

Кроме того, каждый прибор в сети имеет свой уникальный базовый сетевой адрес.

Подробно настройка сетевого интерфейса описана в п. 3.1.4.

3.1.11 Реакция прибора на случайное отключение питания

Реакция на случайное отключение питания в приборе определяется параметром **bEHv**, который может принимать следующие значения:

 «Продолжить с того же места». При выключении питания прибор сохраняет в течение примерно 2-х часов информацию о своем состоянии и

возвращается в него после включения питания, продолжая работу с того же места. Если до выключения питания прибор находился в состоянии **СТОП** или **АВАРИЯ**, то это же состояние сохранится после включения питания. Если напряжение питания отсутствовало долгое время, и информация о состоянии была утеряна, то прибор переходит в состояние **СТОП**.

- «Запустить первую программу с первого шага». Независимо от того, в каком состоянии прибор находился до выключения питания, при появлении напряжения будет запущена первая Программа с первого Шага.
- «Перейти в состояние СТОП». Прибор переходит в состояние СТОП.
- «Перейти в состояние АВАРИЯ». Прибор переходит в состояние АВАРИЯ.

Прибор производит подсчет случайных отключений питания (параметр **220**). Кроме того, прибор подсчитывает количество собственных пересбросов (параметр **rES**), которые могут происходить при отсутствии питания длительное время.

Значения параметров **220** и **rES** доступны только для просмотра; кроме того, их можно обнулить. Задать им какое-либо ненулевое значение нельзя.

Прибор имеет энергонезависимую память, в которой сохраняются программируемые параметры прибора. Параметры хранятся в памяти в течение нескольких десятков лет.

3.2 Конструкция прибора

Прибор изготавливается в пластмассовом корпусе, предназначенном для монтажа на вертикальной плоскости щита управления электрооборудованием (корпус Щ1) или для настенного монтажа (корпус Н).

Корпус (Щ1 или H) состоит из двух частей, соединяемых между собой при помощи четырех винтов. Внутри корпуса размещены две печатные платы, на которых располагаются элементы схемы прибора. Соединение плат друг с другом осуществляется при помощи плоских разъемных кабелей.

Крепление прибора на щите обеспечивается двумя фиксаторами, входящими в комплект поставки ОВЕН ТРМ151-Щ1.

Для соединения с первичными преобразователями, источником питания и внешними устройствами прибор оснащен присоединительным клеммником с креплением «под винт». Клеммник у приборов щитового крепления находится на задней стенке. В приборах настенного крепления клеммник расположен под верхней крышкой, при этом в отверстиях подвода внешних связей установлены резиновые уплотнители.

Габаритные и установочные размеры прибора приведены в Приложении А.

3.2.1 Лицевая панель прибора. Индикация и управление

На лицевой панели прибора имеются следующие элементы индикации и управления:

- четыре цифровых светодиодных индикатора (ЦИ1...ЦИ4 нумерация сверху вниз);
- 10 светодиодов;
- 6 кнопок.

Внешний вид лицевой панели прибора представлен на рисунке 3.7.

Рисунок 3.7 – Лицевая панель прибора

3.2.1.1 Индикация в рабочем режиме

Цифровые индикаторы ЦИ1...ЦИЗ в рабочем режиме отображают символьную информацию о Канале регулирования. На ЦИ1 возможно отображение одной из 3-х величин:

- измеренной Входом 1 (светодиод «Вход 1»);

измеренной Входом 2 (светодиод «Вход 2»);

- вычисленной Вычислителем (светодиод «Вычисленное значение»).

Назначение цифровых индикаторов представлено в таолице

Назначение светодиодов представлено в таблице 3.3.

Цифровой индикатор	Назначение
ЦИ1	Отображает текущее значение измеренной или вычисленной величины для выбранного Входа (Канала)
ЦИ2	Отображает текущее значение Уставки для регулирования величины, отображаемой на ЦИ1. При этом светится светодиод «УСТАВКА»
ЦИЗ	Отображает значение выходной мощности, подаваемой на Исполнительный механизм, в процентах
ЦИ4	Отображает через точку номер текушей Программы и номер Шага

Таблица 3.2 – Назначение цифровых индикаторов

Отображение времени, прошедшего от начала текущего Шага

На ЦИ2 можно отобразить время, прошедшее от начала текущего Шага. Для этого пользователь нажимает одновременно кнопки шесц + . ЦИ2 покажет время в единицах измерения, установленных параметром Масштаб времени (см. п. 3.1.3.4). При этом засветится светодиод «ВРЕМЯ ШАГА». Для возврата к индикации Уставки на ЦИ2 необходимо еще раз нажать кнопки на циз на

Отображение Уставки типа «мощность»

Если пользователь задал тип Уставки «мощность», то на ЦИ2 отображается слово «*Pr.5P*», а значение Уставки отображается на ЦИЗ. При этом светится светодиод «**УСТАВКА**».

Если на каком-либо ЦИ поместилась не вся информация (например, не все разряды числа), необходимо нажать кнопку С. Окно отображения сдвинется, и пользователь сможет

числа), необходимо нажать кнопку нама. Окно отображения сдвинется, и пользователь сможет посмотреть непоместившуюся информацию.

Светодиод	Назначение			
«АВАРИЯ»	Светится в состоянии критической АВАРИИ (обрыв датчика, перегрев и			
	т.п.). Мигает в состоянии некритической АВАРИИ			
«НАСТР.ПИД»	Светится при автонастройке ПИД-регулятора			
«ВЫЧ.ЗНАЧ.»	Светится при выводе на ЦИ1 вычисленного значения			
«ВХОД 1»	Светится при выводе на ЦИ1 значения, измеренного Входом 1			
«ВХОД 2»	Светится при выводе на ЦИ1 значения, измеренного Входом 2			
«УСТАВКА»	Светится при отображении на ЦИ2 Уставки			
«ВРЕМЯ ШАГА»	Светится при отображении на ЦИ2 времени, прошедшего от начала			
	текущего Шага			
«РУ1»	Показывает, что Канал находится в режиме Ручного управления:			
	 – мигает при ручном управлении выходной мощностью Регулятора, 			
	– постоянно светится при ручном управлении Уставкой.			
«РУ2»	Не используется			
«K1»	Светится, если Выходной элемент 1 ключевого типа (с маркировкой «Р»,			
	«К», «С») находится в состоянии «замкнуто»			
«K2»	Аналогично для Выходного элемента 2			

Таблица 3.3 – Назначение светодиодов

3.2.1.2 Назначение кнопок в рабочем режиме

Назначение кнопок при Рабочем режиме представлено в таблице 3.4. Назначение кнопок в других режимах описано в соответствующих разделах РЭ.

Таблица 3.4 – Назначение кнопок

Кнопка	Назначение				
(нажать и удерживать 2-3 с)	Запуск/остановка Программы. Переход из состояния СТОП (STOP) в состояние РАБОТА (RUN) и обратно				
880 0 +	Выбор параметра на ЦИ1				
B80	Выбор параметра, индицируемого на ЦИ2				
	Сдвиг окна отображения для просмотра информации, не поместившейся на цифровых индикаторах; при аварии – отображение на ЦИ2 кода аварии				
	Переход в режим «Быстрого» программирования				
Каза	Переход в режим Программирования				
на н	Переход в режим Автонастройки ПИД-регуляторов				
Анкод	Переход в режим Юстировки				
выход	Выход из вспомогательных режимов; отключение аварийной сигнализации; переход из режима АВАРИЯ в СТОП				
выход	Переход в состояние ПАУЗА (из состояния РАБОТА) и обратно				
ввод + Стоп	Переход в режим Выбора Программы и Шага (режим SEL)				

Окончание таблицы 3.4

Кнопка	Назначение			
<u>≪</u> + Выход + 🛠	Переход в режим Ручного управления уставкой и обратно			
💥 н Выход н 🔛	Переход в режим Ручного управления выходным сигналом регулятора (мощностью) и обратно			
≪ +≈ (+≥)	Изменение значения параметра (выходного сигнала или уставки) в режиме Ручного управления			
выход + стоп + ввод	Принудительная перезагрузка прибора			
BUXOD + CTON	Переход в состояние ПАУЗА (из состояния РАБОТА) и обратно			

Примечание – Порядок нажатия кнопок важен. Сочетание **воо** + **o** означает, что нужно нажать кнопку **bo** и. не отпуская ее, нажать кнопку **b**.

3.2.1.3 Состояния прибора и их индикация

Прибор может находиться в одном из описанных ниже состояний:

- В состоянии РАБОТА производится выполнение Программы технолога.
- В состоянии ПАУЗА регулирование продолжается, но «замораживаются» все динамические изменения: прекращается отсчет времени Программы технолога и изменение Уставки. После повторного старта ход Программы возобновляется с прерванного места. Состояние ПАУЗА можно использовать для искусственного продления Программы технолога.
- В состояние КОНЕЦ ПРОГРАММЫ прибор попадает после завершения выполнения Программы технолога.
- В состоянии СТОП ни одна Программа технолога не выполняется. При этом возможно или отключение Выходных устройств, или поддержание фиксированного значения мощности на Исполнительных механизмах, или регулирование по заданной Уставке. Параметры, описывающие состояние СТОП, задаются пользователем (см. п. 3.1.3.3).
- В состояние АВАРИЯ прибор переходит при возникновении аварийной ситуации. В этом состоянии также возможно поддержание фиксированного значения мощности на ИМ (см. п. 3.1.3.3).

Подробно о состоянии АВАРИЯ и видах аварий см. п. 10.7.

Схема переключения состояний прибора приведена на рисунке 3.8.

В каждом состоянии, кроме РАБОТА, на ЦИ2 выводится соответствующее сообщение. Список возможных сообщений приведен в таблице 3.5.

Рисунок 3.8 – Схема переключения состояний прибора

Сообщение на ЦИ2	Состояние прибора	Описание состояния прибора	
End («End»)	КОНЕЦ	Остановка после выполнения Программы	
	ПРОГРАММЫ		
StoP («StoP»)	СТОП	Остановка выполнения Программы	
<i>rப்</i> டாச் («rUnP»)	ПАУЗА	Пауза при выполнении Программы	
FREL («FAiL»)	АВАРИЯ	Авария при выполнении Программы	

Таблица 3.6 – Индикация состояния прибора

3.2.1.4 Режимы прибора и общая схема их переключения

На рисунке 3.9 показана общая схема переключения режимов прибора. На схеме приведены также назначения кнопок и их комбинаций в Рабочем режиме. Детальное описание индикации и управления в режимах «Быстрого» программирования, Программирования, Юстировки входов, Автонастройки ПИД-регуляторов и Ручного управления дано в соответствующих разделах РЭ.

Рисунок 3.9 – Схема переключения режимов прибора

4 Меры безопасности

По способу защиты от поражения электрическим током прибор соответствует классу II по ГОСТ 12.2.007.0–75.

К эксплуатации и техобслуживанию прибора должны допускаться лица, изучившие правила эксплуатации, прошедшие обучение и проверку знаний по вопросам охраны труда в соответствии с «Типовым положением об обучении по вопросам охраны труда» (НПАОП 0.00-4.12) и имеющих группу допуска не ниже III согласно «Правилам безопасной эксплуатации электроустановок потребителей» (НПАОП 40.1-1.21).

Не допускается попадание влаги на контакты выходного разъема и внутренние электроэлементы прибора.

Запрещается использование прибора в агрессивных средах с содержанием в атмосфере кислот, щелочей, масел и т. п.

Запрещается проводить любые подключения к прибору и работы по его техническому обслуживанию при включенном питании.

При проведении текущего ремонта необходимо соблюдать указания мер безопасности, настоящего РЭ.

Ремонт прибора производится на предприятии-изготовителе в заводских условиях с применением специальной стендовой аппаратуры.

5 Монтаж и подключение прибора

При монтаже прибора для его крепления следует использовать монтажные элементы, входящие в комплект поставки прибора.

Примечание – Перед монтажом прибора рекомендуется произвести его конфигурирование через ПК или с передней панели прибора.

5.1 Монтаж прибора в корпусе настенного крепления (ОВЕН ТРМ151-Н)

5.1.1 Подготовка посадочного места в шкафу управления

Следует подготовить посадочное место в шкафу управления для установки прибора в соответствии с размерами, приведенными в Приложении А.

Конструкция шкафа управления должна обеспечивать защиту прибора от попадания в него влаги, грязи и посторонних предметов.

5.1.2 Установка прибора на вертикальную стенку в шкафу управления

Установка прибора на вертикальную стенку в шкафу управления осуществляется в следующей последовательности:

1) Кронштейн закрепляется тремя винтами М4 на поверхности, предназначенной для установки прибора (см. Приложение A и рисунок 5.1, а).

Винты для крепления кронштейна не входят в комплект поставки.

2) Крепежный уголок зацепляется на задней стенке прибора за верхнюю кромку кронштейна (рисунок 5.1, б).

3) Прибор прикрепляется к кронштейну винтом М4 × 35 из комплекта поставки (рисунок 5.1, в).

Рисунок 5.1 – Установка прибора настенного крепления

5.2 Монтаж прибора в корпусе щитового крепления (ОВЕН ТРМ151-Щ1)

5.2.1 Подготовка посадочного места на щите управления

Следует подготовить посадочное место на щите управления для установки прибора в соответствии с размерами, приведенными в Приложении А.

Конструкция щита управления должна обеспечивать защиту прибора от попадания в него влаги, грязи и посторонних предметов.

При размещении прибора следует помнить, что при эксплуатации открытые контакты клемм находятся под напряжением, опасным для человеческой жизни. Поэтому доступ внутрь щита управления разрешен только квалифицированным специалистам.

5.2.2 Установка прибора в щит управления

Установка прибора на вертикальную стенку в щит управления осуществляется в следующей последовательности:

1. Прибор вставляется в специально подготовленное отверстие на лицевой панели щита (см. Приложение А и рисунок 5.2, а).

2. Фиксаторы из комплекта поставки вставляются в отверстия на боковых стенках прибора (рисунок 5.2, б).

3. Винты М4 × 35 заворачиваются с усилием в отверстие каждого фиксатора так, чтобы прибор был плотно прижат к лицевой панели щита.

Рисунок 5.2 – Установка прибора щитового крепления

5.3 Монтаж внешних связей

5.3.1 Общие требования

Питание прибора рекомендуется производить от источника, не связанного непосредственно с питанием мощного силового оборудования. Во внешней цепи следует установить выключатель питания, обеспечивающий отключение прибора от сети и плавкие предохранители на ток 1,0 А.

Питание каких-либо устройств от сетевых контактов прибора запрещается.

Схемы подключения датчиков и исполнительных устройств к приборам различных исполнений приведены в Приложении Б. Параметры линии соединения прибора с датчиком приведены в таблице 5.1.

5.3.2 Указания по монтажу

Следует подготовить кабели для соединения прибора с датчиками, исполнительными механизмами и внешними устройствами, источником питания и RS-485. Для обеспечения надежности электрических соединений рекомендуется использовать кабели с медными многопроволочными жилами, концы которых перед подключением следует тщательно зачистить и залудить. Зачистку жил кабелей необходимо выполнять с таким расчетом, чтобы их оголенные концы после подключения к прибору не выступали за пределы клеммника.

Сечение жил кабелей не должно превышать 0,75 мм².

При прокладке кабелей следует выделить линии связи, соединяющие прибор с датчиками, в самостоятельную трассу (или несколько трасс), располагая ее (или их) отдельно от силовых кабелей, а также от кабелей, создающих высокочастотные и импульсные помехи.

Для защиты входных устройств прибора от влияния промышленных электромагнитных помех линии связи прибора с датчиками следует экранировать. В качестве экранов могут быть использованы как специальные кабели с экранирующими оплетками, так и заземленные стальные трубы подходящего диаметра.

Внимание! Рабочие спаи ТП должны быть электрически изолированы друг от друга и от внешнего оборудования!

Тип датчика	Длина линии, м, не более	Сопротивление линии, Ом, не более	Исполнение линии
ТС	100	15,0	Трехпроводная, провода равной длины и сечения
ΤΠ	20	100	Термоэлектродный кабель (компенсационный)
Унифицированный сигнал постоянного тока	100	100	Двухпроводная
Унифицированный сигнал постоянного напряжения	100	5,0	Двухпроводная

Таблица 5.1 – Параметры линии связи прибора с датчиками

5.4 Подключение прибора

5.4.1 Общие указания

Подключение прибора следует выполнять по соответствующим схемам, приведенным в Приложении Б, соблюдая при этом изложенную ниже последовательность действий.

1) Подключение прибора к исполнительным механизмам и внешним устройствам, а также к отключенному источнику питания.

2) Подключение линии связи «прибор – датчики» к первичным преобразователям.

3) Подключение линии связи «прибор – датчики» к входам прибора.

4) Подключение линии интерфейса RS-485 (подключение линий интерфейса RS-485 необходимо производить только в том случае, если пользователь планирует конфигурирование прибора с ПК или регистрацию данных на ПК).

Внимание!

1 Диапазон напряжения питания прибора от 90 до 245 В. Во избежание электрического пробоя или перекрытия изоляции подключение к контактам прибора источников напряжения выше указанного запрещается.

2 Для защиты входных цепей прибора от возможного пробоя зарядами статического электричества, накопленного на линиях связи «прибор – датчики», перед подключением к клеммнику прибора их жилы следует на 1-2 сек соединить с винтом заземления щита.

5.4.2 Подключение внешних устройств управления

Цепи дискретных Выходных элементов имеют гальваническую изоляцию от схемы прибора. Исключение составляет выход «Т» для управления внешним твердотельным реле. В этом случае гальваническую изоляцию обеспечивает само твердотельное реле.

5.4.2.1 Подключение к ВЭ типа «электромагнитное реле» («Р»)

На клеммы прибора выведены сухие контакты электромагнитного реле, к которому подключают коммутируемую нагрузку.

5.4.2.2 Подключение нагрузки к ВЭ типа «транзисторная оптопара» («К»)

Транзисторная оптопара применяется, как правило, для управления низковольтным электромагнитным или твердотельным реле (до 50 В постоянного тока).

На рисунке 5.3 приведена схема подключения для ВЭ1. Во избежание выхода из строя транзистора из-за большого тока самоиндукции, параллельно обмотке реле необходимо установить диод VD1, рассчитанный на ток 1 А и напряжение 100 В.

Рисунок 5.3

5.4.2.3 Подключение нагрузки к ВЭ типа «симисторная оптопара» («С»)

Оптосимистор включается в цепь управления мощного симистора через ограничивающий резистор R1 (для BЭ1 см. рисунок 5.4). Значение сопротивления резистора определяется величиной тока управления симистора, R1=30/I_{отко}.

Оптосимистор может также управлять парой встречно-параллельно включенных тиристоров VS1 и VS2 (для ВЭ1 см. рисунок 5.5). Для предотвращения пробоя тиристоров из-за высоковольтных скачков напряжения в сети к их выводам рекомендуется подключать фильтрующую RC цепочку (R2C1).

Рисунок 5.5

5.4.2.4 Подключение к ВЭ для управления твердотельным реле («Т»)

Выходной элемент «Т» выдает напряжение от 4 до 6 В для управления внешним твердотельным реле. Схема подключения представлена на рисунке 5.6.

Рисунок 5.6

Данный тип выходного элемента не оснащен внутренней гальванической изоляцией. Гальваническую развязку прибора и подключенного исполнительного механизма обеспечивает само твердотельное реле. Внутри выходного элемента установлен ограничительный резистор R_{огр} номиналом 100 Ом.

5.4.3 Подключение датчиков

Схема подключения датчиков к прибору приведена на рисунке Б.1.

5.4.3.1 Подключение термопреобразователей сопротивления

В приборе используется трехпроводная схема подключения термопреобразователей сопротивления. При такой схеме к одному из выводов TC подключаются одновременно два провода, соединяющих его с прибором, а к другому выводу – третий соединительный провод (см. рисунок Б.1).

Внимание! Сопротивления всех трех соединительных проводов должны быть равны. Для

этого используются одинаковые провода равной длины. В противном случае результаты измерений могут быть неточными.

Примечание – Пользователь может подключить TC также по двухпроводной схеме (например, с целью использования уже имеющихся на объекте линий связи). Однако при этом отсутствует компенсация сопротивления соединительных проводов и поэтому может наблюдаться некоторая зависимость показаний прибора от колебаний температуры проводов. При использовании двухпроводной схемы при подготовке прибора к работе должны быть выполнены действия, указанные в Приложении Д.

5.4.3.2 Подключение ТП

 Подключение ТП к прибору производятся с помощью специальных компенсационных (термоэлектродных) проводов, изготовленных из тех же самых материалов, что и ТП. Допускается также использовать провода из металлов с термоэлектрическими характеристиками, которые в диапазоне температур 0...100 °С аналогичны характеристикам материалов электродов ТП.

2) При соединении компенсационных проводов с ТП и прибором необходимо соблюдать полярность (см. схему подключения, рисунок Б.1).

При нарушении вышеуказанных условий могут возникать значительные погрешности при измерении!

 Во избежание влияния помех на измерительную часть прибора линию связи прибора с датчиком рекомендуется экранировать. В качестве экрана может быть использована заземленная стальная труба.

Внимание! Рабочие спаи ТП должны быть электрически изолированы друг от друга и от внешнего оборудования! Запрещается использовать ТП с неизолированным рабочим спаем.

5.4.3.3 Подключение активных датчиков, имеющих унифицированный выходной сигнал тока или напряжения

1) Активные датчики с выходным сигналом в виде постоянного напряжения (-50 ... 50 мВ или 0...1 В) подключаются непосредственно к входным контактам прибора.

2) Активные датчики с выходным сигналом в виде тока (0...5 мА, 0...20 мА или 4...20 мА), в том числе датчики положения токового типа, можно подключать к прибору только после установки внешнего шунтирующего резистора (см. рисунок Б.1). Резистор должен быть прецизионным (типа C2-29B, C5-25 и т.п., мощностью не менее 0,25 Вт, сопротивлением 100 Ом ± 0,1 %) и высокостабильным во времени и по температуре (ТКС не хуже 25х10⁻⁶ 1/°С).

3) Для питания нормирующих преобразователей необходим дополнительный источник постоянного напряжения U_n. На рисунке 5.7 показана схема подключения датчиков с унифицированным выходным сигналом 4...20 мА к приборам по двухпроводной линии. Значение напряжения U_n указывается в технических характеристиках нормирующего преобразователя и, как правило, лежит в диапазоне 18...36 В.

4) Во избежание влияния помех на измерительную часть прибора линию связи прибора с датчиком рекомендуется экранировать. В качестве экрана может быть использована заземленная стальная труба.

Внимание! «Минусовые» входы датчиков в приборе электрически объединены между собой.

Рисунок 5.7 – Схема подключения активных датчиков типа "параметр-ток", "параметр-напряжение" и датчиков положения токового типа

5.4.3.4 Подключение резистивных датчиков положения

Эти датчики предназначены для определения текущего положения (степени открытия или закрытия) запорно-регулирующих клапанов, задвижек, шаберов и т.п. при регулировании технологических параметров.

В промышленности чаще всего применяются датчики положения резистивного типа. В датчиках этого типа в качестве чувствительного элемента используется резистор переменного сопротивления, ползунок которого механически связан с регулирующей частью исполнительного механизма.

ОВЕН ТРМ151-03 способен обрабатывать сигналы датчиков положения резистивного типа с сопротивлением до 900 Ом или до 2 кОм.

Пример схемы подключения резистивного датчика к входу 2 прибора представлен на рисунке 5.8.

Рисунок 5.8 – Схема подключения датчиков положения резистивного типа

Внимание! При использовании датчиков положения любого типа должна быть проведена совместная юстировка системы "датчик-прибор" (см. Приложение К).

5.4.4 Подключение к ПК по интерфейсу RS-485

Подключение прибора к ПК по интерфейсу RS-485 необходимо производить только в том случае, если пользователь планирует конфигурирование прибора с ПК или регистрацию данных на ПК.

Подключение прибора к ПК по RS-485 производится через адаптер OBEH AC3-М (или другой адаптер интерфейса RS-232/RS-485).

Связь прибора по интерфейсу RS-485 выполняется по двухпроводной схеме. Длина линии связи должна быть не более 800 метров. Подключение осуществляется витой парой проводов, соблюдая полярность (см. рисунок Б.1). Провод А подключается к выводу А прибора. Аналогично, выводы В соединяются между собой.

Внимание! Подключение производится при отключенном питании обоих устройств.

6 Программирование прибора

6.1 Общие принципы программирования прибора

Перед эксплуатацией прибора необходимо задать полный набор значений программируемых параметров, определяющих работу прибора. Этот набор параметров называется Конфигурацией.

При производстве прибора в него записываются заводские значения программируемых параметров. Пользователь может изменить значения необходимых параметров. Допускается изменять значения не всех параметров, а только требуемых.

Конфигурация записывается в энергонезависимую память и сохраняется в ней при отключении питания.

Программирование прибора можно производить двумя способами:

- кнопками на лицевой панели прибора;
- на ПК с помощью программы «Конфигуратор ТРМ151» или программы «Быстрый старт ТРМ151-03».

Примечание – Рекомендуется производить программирование прибора на ПК, так как удобный пользовательский интерфейс программ конфигурирования уменьшает вероятность задания ошибочных значений параметров.

Перед программированием прибора с помощью кнопок на его лицевой панели необходимо включить питание прибора. Никаких других предварительных операций проводить не требуется. Принципы программирования прибора с помощью кнопок на лицевой панели прибора описаны в п 9.

Для программирования с помощью программ «Конфигуратор ТРМ151» или «Быстрый старт ТРМ151-03» необходимо подключить прибор к ПК по интерфейсу RS-485 через адаптер ОВЕН АСЗ-М или другой адаптер RS-485/RS-232 (см. п. 5.4.4).

Работа с программой «Конфигуратор ТРМ151» описана в п. 8, о «Быстром старте ТРМ151-03» см. п. 8.9.

Полный список программируемых параметров представлен в Приложении В.

6.2 Последовательность задания программируемых параметров прибора

6.2.1 Задание Конфигурации прибора

Задание Конфигурации прибора следует выполнять с соблюдением изложенной ниже технологии.

1) Задается тип датчика in-t для каждого используемого Входа.

2) Для каждого активного датчика задаются верхняя и нижняя границы диапазона измерения Ain.H и Ain.L.

3) При использовании ТП включается режим автоматической коррекции по температуре свободных концов ТП параметром **Сј-.С**.

4) При необходимости для каждого Входа задаются период опроса датчика, параметры цифровых фильтров и коррекции показаний датчика.

5) Задаются: формула для вычислителя параметром CAL.t, количество аргументов вычислителя (параметр n.in.C), значения параметров фильтров (параметры CL.FG и CL.Fd), и количество знаков после десятичной точки на индикаторе (параметр dP).

6) При необходимости расчета влажности задается значение психрометрического коэффициента параметром **A.ist**.

7) При вычислении более чем по одному аргументу (если к **Входу 2** подключен измерительный датчик), задаются параметры **in.2 и t.in.2.**

8) При вычислении по формуле «взвешенная сумма» задаются весовые коэффициенты SCA1 и SCA2.

9) Задаются параметры автонастройки или, если пользователь планирует настраивать регулятор вручную, параметры ПИД-регулирования.

10) При необходимости задаются ограничения для выходной мощности Регуляторов.

11) Настраивается блок управления задвижкой для работы с конкретной задвижкой. При использовании датчика положения задвижки это указывается в параметре dLP. При работе без датчика положения необходимо как можно точнее задать параметры реального ИМ: полное время хода ИМ (параметр tP.H); начальное положение ИМ (параметр LSP); время выборки люфта (параметр tFP).

12) Задаются параметры работы ИМ: зона нечувствительности (параметром **db.F**), минимальное время остановки задвижки (параметром **t.StP**), минимальное время работы задвижки (параметром **TP.L**).

6.2.2 Задание Программы технолога

В памяти прибора можно задать и сохранить до 12 Программ технолога.

Перед заданием параметров Программы рекомендуется нарисовать график изменения Уставок регулируемых величин во времени и разбить его на отдельные Шаги (см. пример на рисунке 3.2).

Для всех Программ прибора:

Задается масштаб времени для параметров, описывающих длительность, параметром t.SCL.

Для всей Программы:

Разрешается запуск программы в параметре rnPr.

Для каждого Шага Программы:

Задается тип Шага St.tY.

Для последнего Шага Программы задается тип «конец программы».

Для каждого Шага Программы, кроме Шага типа «конец программы»:

1 Задаются условия перехода на следующий Шаг.

2 Задаются для каждого шага тип Уставки «значение», если на данном Шаге планируется регулирование измеряемой величины, или «мощность», если регулирования не будет, параметром **P.-SP.**

3 Задается для каждого шага значение Уставки SP.LU.

4 При необходимости плавного выхода на Уставку задается скорость выхода на Уставку в параметре LF.LU.

5 Если планируется управлять Уставкой вручную в процессе выполнения Программы, задаются границы изменения Уставки параметрами **b.CH.L** и **b.CH.H**.

Для Шага типа «шаг с переходом»:

Задаются номер Программы **nU.Pr** и номер Шага **nU.St**, на который будет осуществляться переход.

6.2.3 Задание вспомогательных параметров прибора

1) Задается режим, в который перейдет прибор после восстановления питания, **bEHv**.

2) При необходимости задается режим, в который перейдет прибор в состоянии СТОП (параметры Шага № 10 Программы № 12).

3) При необходимости задается режим, в который перейдет прибор в состоянии АВАРИЯ (параметры Шага № 9 Программы № 12).

7 Настройка сетевого интерфейса RS-485

7.1 Сетевые параметры и их заводские установки

Режим работы сети RS-485 определяют 5 параметров, представленных в таблице 3.7. Кроме того, каждый прибор в сети RS-485 имеет свой уникальный Базовый сетевой адрес (см. п. 7.2).

При конфигурировании прибора на заводе-изготовителе для прибора и Конфигуратора устанавливаются одинаковые значения параметров, определяющих работу в сети RS-485 (см. таблицу 7.1).

Таблица 7.1 – Заводские значения сетевых параметров ОВЕН ТРМ151 и программы «Конфигуратор ТРМ151»

Имя параметра	Название параметра	Значение	
bPS	Скорость обмена данными	9600 бит/с	
Len	Длина слова данных	8 бит	
PrtY	Контроль четности	отсутствует	
Sbit	Количество стоп-бит в посылке	1	
A.Len	Длина сетевого адреса	8 бит	
rs.dL	Время задержки ответа по сети	1 мс	

Изменение сетевых настроек прибора или программы может потребоваться при одновременной работе с несколькими приборами в сети.

При неустойчивой связи с прибором, на что указывают частые сообщения об ошибках при чтении или записи параметров, может возникнуть необходимость изменить **Скорость обмена данными**. Например, при работе на медленном ПК, если скорость составляла 9600 бит/с, следует установить 38400 или 57600 бит/с.

Возможные значения сетевых параметров приведены в Приложении В.

Внимание!

1 Для обеспечения совместной работы сетевые параметры всех приборов одной сети и программы «Конфигуратор ТРМ151» должны быть одинаковы. В противном случае невозможно установить связь между приборами.

2 Базовые адреса всех приборов одной сети должны быть различны и заданы с интервалом, кратным 8 (см. п. 7.2).

7.2 Базовый адрес прибора

Каждый прибор в сети RS-485 должен иметь свой уникальный Базовый адрес в сети.

Длина Базового адреса прибора определяется параметром A.Len при конфигурировании сетевых настроек и может быть либо 8, либо 11 бит. Соответственно, максимальное значение, которое может

принимать Базовый адрес при 8-битной адресации – 255, а при 11-битной адресации – 2047.

На заводе-изготовителе всем приборам устанавливается одинаковый Базовый адрес Addr, равный 16. Если планируется использовать в одной сети RS-485 несколько приборов, то им необходимо задать новые значения Базовых адресов.

Для каждого следующего прибора OBEH TPM151 в сети Базовый адрес задается по формуле:

Базовый адрес прибора ОВЕН ТРМ151 = Базовый адрес предыдущего прибора + 8.

Пример. Для прибора № 1 Базовый адрес равен 16. Тогда для прибора № 2 задается Базовый адрес 24, для прибора № 3 – 32 и т. д.

Таким образом, под каждый прибор OBEH TPM151 резервируется 8 адресов в адресном пространстве сети. Эти адреса могут понадобиться при передаче параметров текущего состояния по сети RS-485.

Внимание! Запрещается задавать другим приборам в сети Базовые адреса, лежащие в диапазоне: [Базовый адрес TPM151 + 7].

7.3 Изменение сетевых параметров прибора

Настройка сетевых параметров прибора может осуществляться двумя способами:

- с помощью программы «Конфигуратор ТРМ151»;
- кнопками на лицевой панели прибора.

7.3.1 Изменение сетевых параметров прибора с помощью Конфигуратора

-

ė.

Задание сетевых параметров прибора с помощью Конфигуратора возможно, только если связь прибора с ПК успешно установлена при текущих сетевых настройках.

Внимание! Прибор продолжает работать с прежними сетевыми настройками до тех пор, пока измененные значения параметров не будут записаны в прибор (см. п. 8.7.8). Измененные сетевые параметры помечаются зеленым шрифтом, а после их записи в прибор шрифт становится черным.

Конфигурация ТРМ151 (Имя не задано) 🔲 Параметры прибора	
😑 🖵 Сетевые параметры прибора	
🛓 🖵 Сетевой вход № ++	
Авс Количество используемых сетевых входов	n.Flt bPS
Длинна слова данных	LEn
Контроль по четности	PrtY
Количество стоп-бит	Sbit
Размер сетевых адресов	A.Len
Авс Задержка ответа по RS-485	Rs.dl

После записи в прибор измененных Сетевых параметров прибора Конфигуратор автоматически предлагает изменить Сетевые параметры программы (см. п. 7.4).

7.3.2 Изменение сетевых параметров прибора кнопками на лицевой панели

В случае, если связь прибора с ПК установить не удается, задание сетевых параметров прибора возможно только кнопками на лицевой панели прибора.

Схема последовательности действий приведена на рисунке 7.1. Подробно о программировании прибора с помощью кнопок на лицевой панели прибора см. п. 9.

После изменения сетевых параметров прибора задаются аналогичные настройки для сетевых параметров программы (см. п. 7.4) и проверяется наличие связи с прибором.

7.4 Изменение сетевых параметров программы

Сетевые параметры программы задаются с помощью Конфигуратора. Доступ к ним возможен через папку Сетевые параметры программы или через меню Режимы программы Сетевые параметры программы.

После задания сетевых параметров программы проверяется наличие связи с прибором, считыванием его имени. Для этого в меню Прибор выбирается команда Проверка связи (Alt+N).

Если произошла ошибка считывания, проверяется правильность установки сетевых

параметров программы, соответствие их сетевым настройкам прибора, правильность подключения прибора к ПК через адаптер ОВЕН АСЗ-М.

• •	
🗉 🝰 Конфигурация ТРМ151 (Имя не задано)	
🗄 🕮 Параметры компьютера	
😑 覺 Сетевые параметры программы	
Корость обмена	bPS
🕂 Длина слова данных	LEn
₩ Четность	PrtY
Кол-во стоп-бит	Sbit
— 🍼 Длина адреса RS-485	A.Len
Авс Собственный адрес прибора	Addr
Карт компьютера	Port

Рисунок 7.1 – Схема задания сетевых параметров прибора кнопками на лицевой панели прибора

8 Программа «Конфигуратор ТРМ151»

8.1 Назначение

Программа «Конфигуратор TPM151» (или Конфигуратор) предназначена для задания конфигурации прибора при помощи ПК. Конфигуратор позволяет считывать конфигурации из прибора, редактировать их и записывать конфигурации в прибор. Также Конфигуратор имеет возможность работать с файлами конфигураций, которые можно сохранять на диске или загружать их с диска.

Пользователь может работать с Конфигуратором без подключенного прибора. Например, пользователь может загрузить в Конфигуратор «пустую» конфигурацию TPM151-03, отредактировать ее и сохранить в файл. Впоследствии пользователь может подключить прибор к компьютеру, установить между ними связь и записать Конфигурацию в прибор.

Так как у Пользователя имеется прибор, сконфигурированный под модификацию TPM151-03, то для упрощения работы перед запуском Конфигуратора рекомендуется подключить прибор к компьютеру. Тогда **Мастер конфигураций TPM151** позволит автоматически установить между ними связь и считать параметры из прибора.

8.2 Установка Конфигуратора

Для установки программы «Конфигуратор TPM151» запускается инсталляционный файл **SetupTRM151.exe** с диска, входящего в комплект поставки, и, следуя инструкциям, устанавливается Конфигуратор на локальный диск компьютера.

8.3 Запуск конфигуратора с помощью Мастера конфигураций ТРМ151. Установка связи с прибором

Предварительные операции

- Подключается прибор ТРМ151-03 к компьютеру по интерфейсу RS-485 через адаптер ОВЕН АСЗ-М или другой адаптер RS-485/RS-232 (см. п. 5.4.4).
- Подается питание на прибор и на адаптер.

Важно! Перед запуском Конфигуратора проверяется, чтобы подключенный прибор не находился в режиме Программирование. Для выхода из режима Программирование необходимо

нажать кнопку шла, удерживая ее 2 - 3 сек, и еще раз кратковременно нажать кнопку

1) Запускается Конфигуратор (файл TRM151.exe).

Автоматически запустится Мастер конфигураций ОВЕН ТРМ151, и на экране появится окно «Связь с прибором» (рисунок 8.1).

Программа предлагает проверить или изменить сетевые параметры прибора.

Рисунок 8.1

2) Проверяется наличие связи с прибором нажатием кнопки «Проверка».

Если связь прибора с компьютером установлена, появится сообщение с информацией об имени подключенного прибора и версии его прошивки.

В этом случае следует закрыть окно сообщения, нажав кнопку «ОК», и перейти к п. 3.

В случае появления сообщения о том, что связь не установлена, следует закрыть окно сообщения, нажав «ОК», выяснить причину отсутствия связи и попробовать ее устранить, используя рекомендации таблицы 8.1 (см. п. 8.4).

После проведенных мероприятий необходимо еще раз проверить наличие связи с прибором, нажав кнопку «Проверка».

Примечание – Все приборы TPM151 поставляются пользователю с одинаковыми сетевыми настройками (см. п. 7.1). Программа «Конфигуратор TPM151» имеет «по умолчанию» те же сетевые настройки. Поэтому при первом подключении прибора TPM151 к компьютеру связь должна устанавливаться автоматически.

Если связь по неизвестным причинам установить не удается, необходимо обратится к специалистам в группу технической поддержки по адресу trm151@owen.ru.

После того, как связь прибора с компьютером установлена:

3) Нажимается кнопка [Вперед>].

Программа попытается считать модификацию из прибора.

Если модификация успешно считана, на экране появится окно с приглашением выбрать уровень доступа (см. рисунок 8.2).

Если модификацию считать не удается, появится соответствующее сообщение. После нажатия «ОК» открывается окно с приглашением выбрать модификацию прибора из списка (рисунок 8.3).

Выбирается модификация прибора («Модификация № 3»). Нажимается кнопка [Вперед>] – открывается окно с приглашением выбрать уровень доступа (рисунок 8.2). Осуществляется переходите к п. 4.

Мастер создания конфигураций Т	PM151	Х Мастер создания конфигу	раций ТРМ151	x
	пределите уровень доступа		Определите модификацию прибора	
Or	пределите уровень доступа:		Приборы TPM-151 выпускаются в нескольких модиченкациях. Определите тип вашего прибора. Тип "базовый" соответствует наиболее общему прибора	
in the second se	гранитеньки (средний) доступ транитеньки (средний) доступ гранительки (средний) доступ оленый доступ пределите пароль:		телноор- "Базонени" прибор (под vw0) Модитени ация №1 Модитени ация №3 Модитени ация №4 Модитени ация №5 Модитени ация №7 Модитени ация №7 Модитени ация №9 Модитени ация №9	I
			Мадиярикация №10 Мадиярикация №11	
< Ha	зад Влеред> Выход Готово		<Назад Влеред Выход Готор	

Рисунок 8.2

Рисунок 8.3

4) Выбор уровня доступа:

- «минимальный» для задания только параметров Программ технолога.
- «средний» для задания параметров Конфигурации ТРМ151-03 и Программ технолога (рекомендуется);
- «полный» для свободного переконфигурирования прибора (только для квалифицированных пользователей).

Для «среднего» или «полного» уровня доступа вводится пароль (см. п. 8.5, таблица 8.2).

5) Нажимается кнопка [Вперед>].

Открывается окно, завершающее подготовку к созданию Конфигурации рисунок 8.4). Если прибор подключен, установите флажки «Включить режим автоматического чтения» и/или «Режим автоматической записи» (см. п. 8.7.5, 8.7.8).

Рисунок 8.4

6) Нажмите кнопку «Готово».

Программа открывает лист «Дерево параметров» рабочего окна Конфигуратора, в котором создана новая Конфигурация (см. п. 8.6).

8.4 Причины отсутствия связи прибора с компьютером и способы их устранения

Возможные причины отсутствия связи прибора с компьютером и способы их устранения перечислены в таблице 8.1.

Таблица	8.1
---------	-----

Причина отсутствия связи	Способы устранения неисправности
Неправильно указан СОМ-	в Мастере создания конфигураций нажимается кнопка
порт, к которому подключен	[Изменить]. В открывшемся окне для параметра Порт
адаптер сетевого	компьютера Port в поле «Значение» выбирается нужный СОМ-
интерфейса.	порт.
	Путь для задания СОМ-порта в окне Конфигуратора:
	🖃 攳 Конфигурация ТРМ151 (Имя не задано)
	🖻 🗐 Параметры компьютера
	日 記 Ceтевые параметры программы
	I IOPT KOMINIOTEPA Port
пеправильно подключен	проверяется правильность подключения.
приоор или адаптер	 ОВЕН АСЗ-и должен оыть подключен к соответствующему СОМ-порту ПК;
	- сетевые выходы «А» и «В» адаптера ОВЕН АСЗ-М должны
	быть подключены к аналогичным выходам прибора;
	– на прибор и адаптер должно быть подано питание
	(контролируется по свечению индикаторов или
	светодиодов).

Причина отсутствия связи	Способы устранения неисправности
Сетевые настройки прибора	Изменяются настройки программы или прибора так, чтобы они
и программы не совпадают	совпадали (см. раздел 7).
	Сетевые настройки прибора проверяются и меняются с помощью кнопок на лицевой панели прибора по п. 7.3.2. Изменение сетевых настроек программы в Мастере создания конфигураций: нажимается кнопка [Изменить]. В открывшемся окне задаются новые значения параметров в окне Конфигуратора - см. п. 7.4.
Прибор работает в режиме	Прибор переводится в режим подчиненного для того, чтобы он
Мастера сети RS-485	воспринимал команды от ПК.

Окончание таблицы 8.1

Примечание – Если Пользователь находится в главном окне Конфигуратора, после проведенных мероприятий проверяется наличие связи с прибором считыванием его имени. Для этого в меню Прибор выбирается команда Проверка связи (или нажимаются клавиши Alt+N).

8.5 Уровни доступа

При запуске программа «Конфигуратор ТРМ151» предлагает выбрать уровень доступа. Всего в программе имеется 3 уровня доступа, 2 из которых защищены паролями. Информация об уровнях доступа представлена в таблице 8.2.

При желании пользователь может изменить пароли доступа с помощью команды меню Сервис - Смена паролей.

При запуске на минимальном уровне доступа программа автоматически попытается считать часть конфигурации из прибора для построения таблиц Программ технолога (см. п. 8.6.2). При этом прибор должен быть подключен к компьютеру и запитан. Если программе не удается установить связь с прибором и первые 5 параметров считываются неудачно, происходит прекращение автоматического считывания. После установки связи прибора с программой необходимо восстановить режим автоматического чтения, установив флаг в пункте ٨

леню	Режимы	программы	\rightarrow	Режим	автомат	ического	чтения.
------	--------	-----------	---------------	-------	---------	----------	---------

Уровень доступа	Пароль	Предоставляемые возможности	Для кого рекомендуется
Минимальный	нет	Доступ только к параметрам Программ технолога и Уставкам	Оператор
Средний	не задан («пустой»)	Доступ ко всем параметрам, определяющим настройки прибора	Технолог, обслуживающий персонал
Полный	«1»	Ограничений нет. Доступ ко всем параметрам прибора, имеется возможность изменить конфигурацию прибора, разрешена инициализация прибора	Наладчик системы, системный интегратор

Таблица 8.2

Внимание! Изменение конфигурации на полном уровне доступа рекомендуется производить только после изучения полного «Руководства по эксплуатации» прибора ОВЕН ТРМ151, имеющегося на диске.

8.6 Интерфейс пользователя

После запуска программы «Конфигуратор ТРМ151» открывается рабочее окно программы (рисунок 8.5), в верхней части которого находятся главное меню, панель инструментов и вкладки листов.

Рабочее окно Конфигуратора содержит два листа:

- «Дерево параметров»;
- «Таблица программ».

Эти листы по-разному отображают информацию о программируемых параметрах прибора. При этом значения параметров на обоих листах одинаковы.

При запуске программы открывается лист «Дерево параметров».

Рисунок 8.5 – Рабочее окно программы «Конфигуратор ТРМ151». Лист «Дерево параметров» (уровень доступа – «средний»)

8.6.1 Лист «Дерево параметров»

Внешний вид листа «Дерево параметров» рабочего окна Конфигуратора представлен на рисунке 8.5. Дерево параметров содержит корневой каталог Конфигурация ТРМ151, который включает в себя три ветви:

- ПАРАМЕТРЫ ПРИБОРА;
- ОПРОС ОПЕРАТИВНЫХ ПАРАМЕТРОВ;
- ПАРАМЕТРЫ КОМПЬЮТЕРА.

Ветвь ПАРАМЕТРЫ ПРИБОРА содержит полный набор параметров для определения конфигурации прибора и описания Программ технолога. Параметры прибора сгруппированы в папки, внутри которых идет дробление по логическим единицам (Программам, Шагам, устройствам).

Список параметров данной ветви, который появляется на экране, зависит от уровня доступа (см. п. 8.5).

На уровне доступа «минимальный» появляются только параметры следующих папок:

- Общие параметры
- Программы технолога
- Уставки

На уровне доступа «средний» появляются параметры папок, показанных на рисунке 8.5. Эти параметры подробно описаны в разделе 3.

На уровне доступа «полный» появляются все параметры прибора.

Ветвь ОПРОС ОПЕРАТИВНЫХ ПАРАМЕТРОВ позволяет просматривать и сохранять параметры текущего состояния прибора (оперативные параметры): измеряемые величины, значения выходной мощности Регуляторов, номер активной Программы/Шага, а также состояние прибора (РАБОТА, СТОП и т. д.).

Подробно о регистрации оперативных параметров см. п. 8.8.

Ветвь ПАРАМЕТРЫ КОМПЬЮТЕРА содержит 2 папки:

- Сервисные параметры программы информационного характера (версия программы «Конфигуратор TPM151» и версия операционной системы);
- Сетевые параметры программы для настройки сетевого интерфейса RS-485 (см. п. 7.4).

В каждой строке дерева представлена информация об одном параметре, а в столбцах приведены характеристики этого параметра. Характеристики параметров папок **ПАРАМЕТРЫ ПРИБОРА** и **ПАРАМЕТРЫ КОМПЬЮТЕРА** представлены в таблице 8.3.

Характеристика	Описание
Название параметра	-
Имя параметра	Содержит до 4-х латинских букв, которые могут быть разделены одной или несколькими точками. Используется при программировании прибора кнопками на лицевой панели
Значение параметра	Может быть представлено в числовом или текстовом формате. Задается вручную (для большинства числовых значений) или выбирается из списка (для текстовых и некоторых числовых значений)
Атрибут Редактирование	Может принимать значения «Редактируемый» или «Нередактируемый». Значение «Нередактируемый» блокирует попытку изменить значение параметра
Атрибут Владелец	Может принимать значения «Пользователь» или «Завод». Значение «Завод» установлено на заводе-изготовителе и запрещает изменение атрибута Редактирование , т. е. один атрибут защищает другой.
Ошибка ввода-вывода	Указывает причину ошибки в случае возникновения таковой, при этом параметр отмечается красным шрифтом

Таблица 8.3 – Характеристики параметров

8.6.2 Лист «Таблица программ»

Внешний вид листа «Таблица программ» главного окна Конфигуратора представлен на рисунке 8.6.

В каждой строке таблицы приводится информация для одного Шага Программы, а столбцы содержат параметры для этого Шага, собранные из разных папок дерева параметров прибора. Такое представление удобно при необходимости видеть все параметры Программы технолога в одном месте.

8.6.3 Меню Конфигуратора

Главное меню Конфигуратора включает 5 пунктов: Файл, Прибор, Режимы программы, Сервис и Справка.

Список команд меню с указанием «горячих» кнопок приведен в таблице 8.4.

Деревья	паранетров	Таблица	: Объект №1	ано в П Таблиц	а: Объект №2	Q Com	а структуры	1	
Объект №1			Дерево программ	Дерево программ	Дерево программ	Дерево программ	Дерево программ	Дерево программ	-
			Тип шага	Логика перехода на спедующи	Условие при переходе по уставке	Номер ода-источния величины	Уставка для перехода	1лительность шага	
Πpor.Nº	Шаг Nº	Иня шага	st.ty	LG.P5	Sn.PS	in.PS	SP.PS	t.PS	Г
1	1	Имя не задано	Нет данных	Нет данных	Нет данных	Нет данных	Нет данных	Нет данных	Í.
1	2	Имя не задано	Нет данных	Нет данных	Нет данных	Нет данных	Нет данных	Нет данных	İ
1	3	Имя не задано	Нет данных	Нат данных	Нёт данных	Нёт дагеных	Нот данных	Нат данных	Ì.
1	4	Имя не задано	Нет даяных	Нет данных	Нет данных	Нет данных	Нет данењи	Нет данных	Ì
1	5	Имя не задано	Нет данных	Нет данных	Нет данных	Нет данных	Нет данных	Нет денньо:	ľ
1	6	Имя не задано	Нет данных	Нет данных	Нет данных	Нет данных	Нет данных	Нет данных	ľ
1	7	Имя не задано	Нет данных	Нет данных	Нет данных:	Нет дагеных	Нет:данных	Нет данных	t
1	8	Имя не задано	Нет данных	Нет данных	Нот данных	Нет данных	Нет данных	Нот данных	t
1	9	Имя не задано	Нет данных	Нет данных	Нет данных	Нет данных	Нет данных	Нет данных	Ì
1	10	Имя не задано	Нет данных	Нет данных:	Нет данных	Нет данных	Нет данных	Нет данных	İ
2	1	Имя не задано	Нет данных	Нет данных	Нет данных	Нет данных	Нет данных	Нат данных	ľ
2	2	Имя не задано	Нет данных	Нет данных	Нет данных	Нет данных	Нет данных	Нат данных	ľ
2	3	Имя не задано	Нет данных	Нет данных	Нет данных	Нет данных	Нет данных	Нет данных	ľ
2	4	Имя не задано	Нет данных	Нат данных	Нот данных	Нет данных	Нет данных	Нет данных	ľ
2	5	Имя не задано	Нет данных	Нат данных	Нет данных	Нет данных	Нет данных	Нет данных:	ľ
2	6	Иня не задано	Нет данных	Нат данных	Нет данных	Нет данных	Нет даннысс	Нет данных	ľ
2	7	Имя не задано	Нет данных	Нат данных	Нет данных	Нет данных	Нат данных	Нет данных	ľ
2	8	Имя не задано	Нет данных	Нат данных	Нет данных	Нет данных	Нет данных	Нет данных	ſ

Рисунок 8.6 – Рабочее окно программы «Конфигуратор ТРМ151». Лист «Таблица программ»

Таблица 8.4 – Команды меню

Команда	Назначение	Клавиши
Меню Файл	Работа с файлами конфигурации	
Новая Конфигурация	Создание новой конфигурации прибора	Ctrl+N
Новый уровень/	Загрузка текущей конфигурации на другом уровне доступа	
модификация	или переход к другой модификации	
Открыть	Открытие файла (с расширением .151)	Ctrl+O
Сохранить	Сохранение конфигурации в файл	Ctrl+S
Сохранить как	Сохранение конфигурации в файл с другим именем	
Экспорт в DBF	Экспорт таблицы значений параметров в формат DBase-III	
Импорт из DBF	Импорт таблицы значений параметров из формата DBase-III	
Печать таблицы	Печать листа «Таблица программ»	
программ		
{Список файлов}	Список 4-х последних файлов с конфигурациями	
Выход	Закрытие программы	

Продолжение таблицы 8.4

Команда	Назначение	Клавиши
Меню Прибор	Работа с прибором (чтение/запись параметров)	
Считать все	Считывание значений всех параметров из прибора в	Alt+R
параметры	компьютер	
Записать все	Запись всех параметров из компьютера в прибор	Alt+W
параметры		
Записать	Запись измененных значений параметров из компьютера	Alt+U
только	в прибор. После редактирования значения параметр	
измененные	помечается зеленым цветом, после записи в прибор	
	шрифт становится черным	
Сравнить	Сравнение значений параметров прибора и открытой	Alt+C
с параметрами	конфигурации	
в приборе		
Записать только	Запись только тех параметров, которые не записались	
параметры	при предыдущей команде записи (эти параметры	
сошибками	помечены красным цветом)	
Считать все	Считывание значений всех параметров выделенной	Alt+Ctrl+R
параметры	папки из прибора в компьютер	
выделенной папки		
Записать все	Запись значений всех параметров выделенной папки из	Alt+Ctrl+W
параметры	компьютера в прибор	
выделенной папки		
Записать только	Запись измененных значений параметров выделенной	Alt+Ctrl+U
измененные	папки из компьютера в приоор. После редактирования	
параметры папки	значения параметр помечается зеленым шрифтом, после	
	записи в приоор шрифт становится черным	Althe Otal LO
Сравнить параметры	Сравнение значении параметров выделеннои папки	Alt+Ctrl+C
папки с параметрами	приоора и открытой конфигурации	
в приооре		A 14 i ↑
к предыдущему	выделение в дереве параметров предыдущего	AIL+
	с ошибкой Такой параметр помечен красным цветом в	
параметру дерева	с ошиокой. Такой параметр помечен красным цветом, в попе «Ошибки врола-вывола» указывается причина	
	поле «Ошиоки ввода вывода» указывается причина	
К спелующему	Выделение в дереве параметров спедующего параметра	Δlt+.
проблемному	считанного из прибора или записанного в него с ошибкой	
параметру дерева	Такой параметр помечен красным цветом в поле	
парашетру дорова	«Ошибки ввода-вывода» указывается причина ошибки	
Отчет	Выдача текстового документа со значениями параметров.	
	определяющих структуру прибора	
конфигурации		
Считать параметры	Считывание служебных параметров, необходимых для	
структуры	построения таблиц Программ технолога.	
Графики уставки	Вызывает окно редактирования графика Коррекции	
F - F - J	уставки	
Опрос отдельного	Доступ к отдельным параметрам прибора (только для	Alt+S
параметра	опытных пользователей)	
Проверка связи с	Считывание имени прибора и номера версии его	Alt+N
прибором (vEr, dEv)	прошивки. Используется для проверки связи с прибором.	

Меню Режимы программы Определение режимов работы программы (записи, программы Показывать линейные Показывате индексы параметров. Линейные индексы параметров необходимы при создании новых программ, работающих с прибором Режим автома- тического чтения В этом режиме программа автоматически считывает из прибора значения параметров открываемой папки. Для отключения режима необходимо снять флаг перед данным пунктом меню. Это необходимо, например, при работе с Конфигуратором при отключения параметра записи Режим немедленной В этом режиме запись значения параметро асуществляется сразу после его ввода. Не передавать атрибуты В этом режиме прибор не производит чтения и записи осуществляется сразу после его ввода. Сетевые параметров В этом режиме прибор не производит чтения и записи атрибуты Приборе установлены атрибуты защиты. Сткрывает окно, в котором можно изменить сетевые параметры программы Отображается панель инструментов Преобразователь Выбирает тип преобразователя RS-485 – RS-232. Автоматический преобразователя позволяет ускорить обмен по сети Меню Сервис Дополнительные опции (инициализация прибора, смена паролей и пр.) Инцииализировать прибор Восстановление в приборе заводских установок Alt+1 Послать команду Посылает команду перехода прибора на новые сетевые доступа. Alt+A Фиспорт Изменение паролей для полного и сре	Команда	Назначение	Клавиши
программы чтения, отображения параметров) Показывать линейные Показывает индексы параметров. Линейные индексы параметров необходимы при создании новых программ, индексы Показывает индексы параметров. Линейные индексы параметров необходимы при создании новых программ, работающих с прибором Режим автома- тического чтения В этом режиме программа автоматически считывает из прибора значения параметров открываемой папки. Для отключения режима необходимо снять флаг перед данным пунктом меню. Это необходимо, например, при работе с Конфигуратором при отключення параметра записи Режим немедленной В этом режиме запись значения параметра записи осуществляется сразу после его ввода. Не передавать атрибуты В этом режиме прибор не производит чтения и записи атрибуты параметров. Режим немного ускоряет работу, но может привести к ошибкам ввода-вывода, если в приборе установлены атрибуты защиты. Сетевые параметры Отображается панель инструментов Statusbar Отображается панель инструментов Statusbar Отображается панель подсказок (внизу окна) Преобразователь Выбирает тип преобразователь позволяет ускорить обмен по сети Alt+1 Меню Сервис Дополнительные опции (инициализация прибора, смена паролей и пр.) Alt+1 Инициализировать прибор Посылает команду перехода прибора на новые сетевые доступа. Alt+A Арсп	Меню Режимы	Определение режимов работы программы (записи,	
Показывать линейные Показывает индексы параметров Линейные индексы работающих с прибором Режим автома- тического чтения В этом режиме программа автоматически считывает из прибора значения параметров открываемой папки. Для отключения режима необходимо, например, при работе с Конфигуратором при отключенном приборе. Режим немедленной В этом режиме программа автоматически считывает из прибора значения параметров открываемой папки. Для отключения режима необходимо, например, при работе с Конфигуратором при отключенном приборе. Режим немедленной В этом режиме запись значения параметра осуществляется сразу после его ввода. Не передавать атрибуты В этом режиме прибор не производит чтения и записи атрибуты параметров. Режим немного ускоряет работу, но может привести к ошибкам ввода-вывода, если в приборе установлены атрибуты защиты. Сетевые параметры Отображается панель инструментов Сотображается панель инструментов Statusbar Отображается панель подсказок (внизу окна) Преобразователь Выбирает тип преобразователя RS-485 – RS-232. Автоматический преобразователь позволяет ускорить обмен по сети Alt+1 Меню Сервис Дополнительные опции (инициализация прибора, смена паролей и пр.) Alt+1 Инициализировать прибор Посылает команду перехода прибора на новые сетевые доступа. Alt+A Арсприк	программы	чтения, отображения параметров)	
линейные индексы параметров необходимы при создании новых программ, работающих с прибором Режим прехим из прибора значения параметров открываемой папки. Для отключения режима необходимо, натример, при работе с Конфигуратором при отключенном приборе. Режим поработе с Конфигуратором при отключения параметров записи В этом режиме запись значения параметра осуществляется сразу после его ввода. Не передавать атрибуты В этом режиме прибор не производит чтения и записи атрибуты параметров Привести к ошибкам ввода-вывода, если в приборе установлены атрибуты защиты. Сетевые параметры порграммы Отображается панель инструментов Тооlbar Отображается панель инструментов Statusbar Отображается панель инструментов Преобразователь выбирает тип преобразователя RS-485 – RS-232. Автоматический преобразователь позволяет ускорить обмен по сети Меню Сервис Дополнительные опции (инициализация прибора, смена паролей и пр.) Инициализировать прибор Посылает команду перехода прибора на новые сетевые настройки Сина паролей Посылает команду перехода прибора на новые сетевые достине паролей для полного и среднего уровней доступа.	Показывать	Показывает индексы параметров. Линейные индексы	
индексы работающих с прибором Режим автома- тического чтения В этом режиме программа автоматически считывает из прибора значения параметров открываемой папки. Для отключения режима необходимо снять флаг перед данным пунктом меню. Это необходимо, например, при работе с Конфигуратором при отключенном приборе. Режим немедленной В этом режиме запись значения параметра записи осуществляется сразу после его ввода. Не передавать априбуты В этом режиме прибор не производит чтения и записи атрибуты параметров. Режим немного ускоряет работу, но может привести к ошибкам ввода-вывода, если в приборе установлены атрибуты защиты. Сетевые Открывает окно, в котором можно изменить сетевые параметры программы Отображается панель инструментов Тооlbar Отображается панель инструментов Выбирает тип преобразователь Выбирает тип преобразователя RS-485 – RS-232. Автоматический преобразователь позволяет ускорить обмен по сети Инициализировать прибор Восстановление в приборе заводских установок Alt+A АРLY Настройки Аlt+A АРLY Настройки Изменение паролей для полного и среднего уровней доступа.	линейные	параметров необходимы при создании новых программ,	
Режим автома- тического чтения В этом режиме программа автоматически считывает из прибора значения параметров открываемой папки. Для отключения режима необходимо снять флаг перед данным пунктом меню. Это необходимо, например, при работе с Конфигуратором при отключенном приборе. Режим немедленной В этом режиме запись значения параметра осуществляется сразу после его ввода. Не передавать аписи В этом режиме прибор не производит чтения и записи атрибуты атрибутов параметров. Режим немного ускоряет работу, но может привести к ошибкам ввода-вывода, если в приборе установлены атрибуты защиты. Сетевые параметры Открывает окно, в котором можно изменить сетевые параметры Отображается панель инструментов Тооlbar Отображается панель инструментов Выбирает тип преобразователя RS-485 – RS-232. Автоматический преобразователь позволяет ускорить обмен по сети Меню Сервис Дополнительные опции (инициализация прибора, смена паролей и пр.) Alt+1 Инициализировать прибор Посылает команду перехода прибора на новые сетевые настройки Alt+A АРLY Настройки Изменение паролей для полного и среднего уровней доступа. Alt+A	индексы	работающих с прибором	
тического чтения из прибора значения параметров открываемой папки. Для отключения режима необходимо снять флаг перед данным пунктом меню. Это необходимо снять флаг перед данным пунктом меню. Это необходимо, например, при работе с Конфигуратором при отключениом приборе. Режим немедленной записи В этом режиме запись значения параметра осуществляется сразу после его ввода. Не передавать атрибуты В этом режиме прибор не производит чтения и записи атрибутов параметров. Режим немного ускоряет работу, но может привести к ошибкам ввода-вывода, если в приборе установлены атрибуты защиты. Сетевые параметров Открывает окно, в котором можно изменить сетевые параметры программы Тооlbar Отображается панель инструментов Statusbar Отображается панель подсказок (внизу окна) Преобразователь Выбирает тип преобразователя RS-485 – RS-232. Автоматический преобразователь позволяет ускорить обмен по сети Инициализировать прибор Дополнительные опции (инициализация прибора, смена паролей и пр.) Инициализировать прибор Посыпает команду перехода прибора на новые сетевые настройки Смена паролей Изменение паролей для полного и среднего уровней доступа. Экспорт Списка Позволяет создать список параметров прибора в	Режим автома-	В этом режиме программа автоматически считывает	
Для отключения режима необходимо снять флаг перед данным пунктом меню. Это необходимо, например, при работе с Конфигуратором при отключенном приборе. Режим немедленной записи В этом режиме запись значения параметра осуществляется сразу после его ввода. Не передавать атрибуты В этом режиме прибор не производит чтения и записи атрибутов параметров. Режим немного ускоряет работу, но может привести к ошибкам ввода-вывода, если в приборе установлены атрибуты защиты. Сетевые параметры Открывает окно, в котором можно изменить сетевые параметры Преобразователь Выбирает тип преобразователя RS-485 – RS-232. Автоматический преобразователь позволяет ускорить обмен по сети Меню Сервис Дополнительные опции (инициализация прибора, смена паролей и пр.) Аlt+1 Инициализировать прибор Восстановление в приборе заводских установок Alt+1 Осылает команду АРLY Посылает команду перехода прибора на новые сетевые настройки Alt+A Унициализировать прибор Посылает команду перехода прибора на новые сетевые настройки Alt+A Экспорт Изменение паролей для полного и среднего уровней доступа. Алконска праметров прибора в	тического чтения	из прибора значения параметров открываемой папки.	
данным пунктом меню. Это необходимо, например, при работе с Конфигуратором при отключенном приборе. Режим немедленной В этом режиме запись значения параметра записи осуществляется сразу после его ввода. Не передавать атрибуты В этом режиме прибор не производит чтения и записи атрибутов параметров. Режим немного ускоряет работу, но может привести к ошибкам ввода-вывода, если в приборе установлены атрибуты защиты. Сетевые параметры Открывает окно, в котором можно изменить сетевые параметры программы Отображается панель инструментов Toolbar Отображается панель подсказок (внизу окна) Преобразователь Выбирает тип преобразователя RS-485 – RS-232. Автоматический преобразователь позволяет ускорить обмен по сети Меню Сервис Дополнительные опции (инициализация прибора, смена паролей и пр.) Инициализировать прибор Восстановление в приборе заводских установок Посылает команду АРLY Посылает команду перехода прибора на новые сетевые доступа. Экспорт Списка Позволяет создать список параметров прибора в		Для отключения режима необходимо снять флаг перед	
работе с Конфигуратором при отключенном приборе. Режим немедленной записи В этом режиме запись значения параметра осуществляется сразу после его ввода. Не передавать атрибуты параметров В этом режиме прибор не производит чтения и записи атрибутов параметров. Режим немного ускоряет работу, но может привести к ошибкам ввода-вывода, если в приборе установлены атрибуты защиты. Сетевые параметры параметры порграммы Открывает окно, в котором можно изменить сетевые параметры порграммы Тооlbar Отображается панель инструментов Сотображается панель подсказок (внизу окна) Выбирает тип обмен по сети Выбирает тип преобразователь обмен по сети RS-485 RS-232. RS-232. Меню Сервис Дополнительные опции (инициализация прибора, смена паролей и пр.) Alt+1 Инициализировать прибор Восстановление в приборе заводских установок Alt+4 АРLY Посылает команду перехода прибора на новые сетевые доступа. Alt+A Экспорт Списка Позволяет создать список параметров прибора в		данным пунктом меню. Это необходимо, например, при	
Режим немедленной записи В этом режиме запись значения параметра осуществляется сразу после его ввода. Не передавать атрибуты В этом режиме прибор не производит чтения и записи атрибутов параметров. Режим немного ускоряет работу, параметров приборе установлены атрибуты защиты. В оток режиме прибор не производит чтения и записи атриборе установлены атрибуты защиты. Сетевые параметры программы Открывает окно, в котором можно изменить сетевые параметры программы Тооlbar Отображается панель инструментов Statusbar Отображается панель подсказок (внизу окна) Преобразователь Выбирает тип преобразователя RS-485 – RS-232. Автоматический преобразователь позволяет ускорить обмен по сети Меню Сервис Дополнительные опции (инициализация прибора, смена паролей и пр.) Инициализировать прибор Восстановление в приборе заводских установок Alt+1 Посылает команду перехода прибора на новые сетевые настройки Alt+A АРLY Изменение паролей для полного и среднего уровней доступа. Аlt+А		работе с Конфигуратором при отключенном приборе.	
записи осуществляется сразу после его ввода. Не передавать атрибуты В этом режиме прибор не производит чтения и записи атрибуты параметров. Режим немного ускоряет работу, но может привести к ошибкам ввода-вывода, если в приборе установлены атрибуты защиты. Сетевые параметры программы Открывает окно, в котором можно изменить сетевые параметры параметры программы Тооlbar Отображается панель инструментов Statusbar Отображается панель подсказок (внизу окна) Преобразователь Выбирает тип преобразователя RS-485 – RS-232. Автоматический преобразователь позволяет ускорить обмен по сети Меню Сервис Дополнительные опции (инициализация прибора, смена паролей и пр.) Alt+1 Инициализировать прибор Восстановление в приборе заводских установок Alt+A АРLY Настройки Аlt+A Зкспорт Списка Позволяет создать список параметров прибора в	Режим немедленной	В этом режиме запись значения параметра	
Не передавать атрибуты параметров В этом режиме прибор не производит чтения и записи атрибутов параметров. Режим немного ускоряет работу, но может привести к ошибкам ввода-вывода, если в приборе установлены атрибуты защиты. Сетевые параметры параметры порграммы Открывает окно, в котором можно изменить сетевые параметры программы Тооlbar Отображается панель инструментов Statusbar Отображается панель подсказок (внизу окна) Преобразователь Выбирает тип преобразователя RS-485 – RS-232. Автоматический преобразователь позволяет ускорить обмен по сети Меню Сервис Дополнительные опции (инициализация прибора, смена паролей и пр.) Alt+1 Инициализировать прибор Восстановление в приборе заводских установок Alt+4 АРLY Настройки Alt+A Зкспорт Списка Позволяет создать список параметров прибора в Автона паролей для полного и среднего уровней доступа.	записи	осуществляется сразу после его ввода.	
атрибуты атрибутов параметров. Режим немного ускоряет работу, параметров но может привести к ошибкам ввода-вывода, если в приборе установлены атрибуты защиты. Сетевые параметры параметры программы программы Тооlbar Отображается панель инструментов Statusbar Отображается панель инструментов Statusbar Отображается панель подсказок (внизу окна) Преобразователь Выбирает тип преобразователя RS-485 – RS-232. Автоматический преобразователь позволяет ускорить обмен по сети Меню Сервис Дополнительные опции (инициализация прибора, смена паролей и пр.) Инициализировать прибор Посылает команду перехода прибора на новые сетевые Аlt+A APLY Настройки Смена паролей Изменение паролей для полного и среднего уровней доступа.	Не передавать	В этом режиме прибор не производит чтения и записи	
параметров но может привести к ошиокам ввода-вывода, если в приборе установлены атрибуты защиты. Сетевые Открывает окно, в котором можно изменить сетевые параметры Открывает окно, в котором можно изменить сетевые параметры программы Toolbar Отображается панель инструментов Statusbar Отображается панель подсказок (внизу окна) Преобразователь Выбирает тип преобразователя RS-485 – RS-232. Автоматический преобразователь позволяет ускорить обмен по сети Меню Сервис Дополнительные опции (инициализация прибора, смена паролей и пр.) Alt+1 Инициализировать прибор Восстановление в приборе заводских установок Alt+A АРLY Настройки Alt+A Зкспорт Изменение паролей для полного и среднего уровней доступа.	атрибуты	атрибутов параметров. Режим немного ускоряет работу,	
Приооре установлены атриоуты защиты. Сетевые Открывает окно, в котором можно изменить сетевые параметры программы программы параметры программы Toolbar Отображается панель инструментов Statusbar Отображается панель подсказок (внизу окна) Преобразователь Выбирает тип преобразователя RS-485 – RS-232. Автоматический преобразователь позволяет ускорить обмен по сети Меню Сервис Дополнительные опции (инициализация прибора, смена паролей и пр.) Alt+1 Инициализировать прибор Восстановление в приборе заводских установок Alt+1 Посылает команду перехода прибора на новые сетевые доступа. Alt+A Экспорт Списка Позволяет создать список параметров прибора в	параметров	но может привести к ошибкам ввода-вывода, если в	
Сетевые Открывает окно, в котором можно изменить сетевые параметры программы параметры программы отображается панель инструментов отображается панель инструментов отображается панель инструментов отображается панель подсказок (внизу окна) Выбирает тип преобразователя RS-485 – RS-232. Автоматический преобразователя позволяет ускорить обмен по сети отображается панельные опции (инициализация прибора, смена паролей и пр.) Инициализировать Восстановление в приборе заводских установок Alt+1 прибор Посылает команду перехода прибора на новые сетевые Alt+A АРLY Изменение паролей для полного и среднего уровней доступа.		приборе установлены атрибуты защиты.	
параметры параметры программы программы Toolbar Отображается панель инструментов Statusbar Отображается панель подсказок (внизу окна) Преобразователь Выбирает тип преобразователя RS-485 – RS-232. Автоматический преобразователя RS-485 – RS-232. Автоматический преобразователя позволяет ускорить обмен по сети Меню Сервис Дополнительные опции (инициализация прибора, смена паролей и пр.) Инициализировать прибор Восстановление в приборе заводских установок Alt+1 прибор Послать команду посылает команду перехода прибора на новые сетевые Alt+A АРLY Настройки Смена паролей Изменение паролей для полного и среднего уровней доступа.	Сетевые	Открывает окно, в котором можно изменить сетевые	
программы Отображается панель инструментов Toolbar Отображается панель инструментов Statusbar Отображается панель подсказок (внизу окна) Преобразователь Выбирает тип преобразователя RS-485 – RS-232. Автоматический преобразователь позволяет ускорить обмен по сети Меню Сервис Дополнительные опции (инициализация прибора, смена паролей и пр.) Инициализировать прибор Восстановление в приборе заводских установок Alt+1 Посылает команду APLY Посылает команду перехода прибора на новые сетевые настройки Alt+A Экспорт Списка Позволяет создать список параметров прибора в Аlt+A	параметры	параметры программы	
Тооlbar Отображается панель инструментов Statusbar Отображается панель подсказок (внизу окна) Преобразователь Выбирает тип преобразователя RS-485 – RS-232. Автоматический преобразователь позволяет ускорить обмен по сети Меню Сервис Дополнительные опции (инициализация прибора, смена паролей и пр.) Инициализировать прибор Восстановление в приборе заводских установок Alt+1 Послать команду АРLY Посылает команду перехода прибора на новые сетевые настройки Alt+A Экспорт Позволяет создать список параметров прибора в Аlt+А	программы		
Statusbar Отображается панель подсказок (внизу окна) Преобразователь Выбирает тип преобразователя RS-485 – RS-232. Автоматический преобразователь позволяет ускорить обмен по сети Меню Сервис Дополнительные опции (инициализация прибора, смена паролей и пр.) Посылает команду перехода прибора на новые сетевые настройки Alt+1 Послать команду Посылает команду перехода прибора на новые сетевые доступа. Alt+A Экспорт Списка Позволяет создать список параметров прибора в	loolbar	Отображается панель инструментов	
Преобразователь Выбирает тип преобразователя RS-485 – RS-232. Автоматический преобразователь позволяет ускорить обмен по сети Меню Сервис Дополнительные опции (инициализация прибора, смена паролей и пр.) Инициализировать Восстановление в приборе заводских установок Alt+1 прибор Послать команду Посылает команду перехода прибора на новые сетевые Alt+A АPLY Настройки Смена паролей Изменение паролей для полного и среднего уровней доступа.	Statusbar	Отображается панель подсказок (внизу окна)	
Автоматический преобразователь позволяет ускорить обмен по сети Меню Сервис Дополнительные опции (инициализация прибора, смена паролей и пр.) Инициализировать Посылает команду перехода прибора на новые сетевые Послать команду Посылает команду перехода прибора на новые сетевые Аlt+A APLY Смена паролей Изменение паролей для полного и среднего уровней доступа. Экспорт списка Позволяет создать список параметров прибора в	Преобразователь	Выбирает тип преобразователя RS-485 – RS-232.	
Меню Сервис Дополнительные опции (инициализация прибора, смена паролей и пр.) Апрессияна соверание в приборе заводских установок Alt+1 Инициализировать прибор Восстановление в приборе заводских установок Alt+1 Послать команду Посылает команду перехода прибора на новые сетевые настройки Alt+A Смена паролей Изменение паролей для полного и среднего уровней доступа. Экспорт		Автоматическии преобразователь позволяет ускорить	
Меню Сервис Дополнительные опции (инициализация приоора, смена паролей и пр.) Инициализировать прибор Восстановление в приборе заводских установок Alt+1 Послать команду Посылает команду перехода прибора на новые сетевые настройки Alt+A Смена паролей Изменение паролей для полного и среднего уровней доступа. Аlt+A Экспорт Списка Позволяет создать список параметров прибора в	Marria Camaria		
Инициализировать прибор Восстановление в приборе заводских установок Alt+I Послать команду Посылает команду перехода прибора на новые сетевые настройки Alt+A Смена паролей Изменение паролей для полного и среднего уровней доступа. Sector (Construction of the sector) Экспорт списка Позволяет создать список параметров прибора в	меню сервис	дополнительные опции (инициализация приоора,	
Инциализировать Восстановление в приооре заводских установок Алтт прибор Посылает команду перехода прибора на новые сетевые Alt+1 Послать команду Посылает команду перехода прибора на новые сетевые Alt+A АРLY настройки Аlt+A Alt+A Смена паролей Изменение паролей для полного и среднего уровней доступа. Экспорт списка		смена паролеи и пр.)	A 14 1 1
Посылает команду перехода прибора на новые сетевые Alt+A APLY настройки Смена паролей Изменение паролей для полного и среднего уровней доступа. Экспорт списка Позволяет создать список параметров прибора в	инициализировать	восстановление в присоре заводских установок	Alt+I
АРLY настройки Антя Смена паролей Изменение паролей для полного и среднего уровней доступа. Антя Экспорт списка Позволяет создать список параметров прибора в	Пропот		Δ I++ Δ
Смена паролей Изменение паролей для полного и среднего уровней доступа. Экспорт списка Позволяет создать список параметров прибора в	послать команду	посылает команду перехода приоора на новые сетевые	AIITA
доступа. Экспорт списка Позволяет создать список параметров прибора в		Пастронки Измощение пародой для полного и средного уровной	
Экспорт списка Позволяет создать список параметров прибора в	Смена паролеи	постипа	
окспорт списка позволяет создать список параметров приоора в	Экспорт списка	Доступа.	
		позволяет создать список параметров приоора в	
измерний в Excel позволяетов MS Excel	измерений в Ехсе	параметров в MS Excel	
Меню Справка Справочная информация	Меню Справка	Справочная информация	
Солержание справки Справочная информация с работе с Конфигуратором	Содержание справки	Справочная информация о работе с Конфигуратором	
О программе Справочная информация о рассто стопфия уратором	Опрограмме	Справочная информация о Конфигураторе	

Окончание таблицы 8.4

8.7 Работа с Конфигуратором

С помощью Конфигуратора пользователь может создать несколько разных конфигураций для одного прибора, сохранить их и загружать в прибор ту конфигурацию, которая необходима в конкретный момент.

Пользователь можете создать новую конфигурацию, не прерывая связь компьютера с прибором. До тех пор, пока пользователь не запишет новую конфигурацию в прибор, он будет работать со старой конфигурацией.

Перед записью новой конфигурации в прибор рекомендуется провести инициализацию прибора, т. е. удаление старой конфигурации.

8.7.1 Создание новой конфигурации

Для создания новой конфигурации следует выбрать из меню Файл команду Новый

(Ctrl+N) или воспользоваться кнопкой программ» рабочего окна программы появится новый корневой каталог «Конфигурация TPM151 (Имя не задано)». Последовательно разворачивая дерево параметров, вводятся нужные значения. В результате создается конфигурация, которая сохраняется в файле или загружается в прибор.

Новая конфигурация автоматически создается при старте программы.

Подсказка! Чтобы развернуть дерево параметров необходимо нажать правую клавишу манипулятора «мышь», наведя курсор на кнопку «плюс» у около названия папки. Для сворачивания дерева – кнопка «минус» около названия развернутой папки.

При создании новой конфигурации ранее считанные значения конфигурационных параметров прибора обнуляются.

8.7.2 Загрузка программы на другом уровне доступа или смена модификации

Из меню Файл выбирается команда Новый уровень/модификация. Программа запрашивает подтверждение намерения пользователя переключиться на другой уровень/модификацию. После нажатия кнопки [Да] запускается Мастер конфигураций ТРМ151. Выполняя его указания по п. 8.3, загружается необходимая модификация или выбирается уровень доступа.

8.7.3 Открытие конфигурации из файла

После выбора из меню **Файл** команды **Открыть** (Ctrl+O) или нажатия кнопки ¹ на панели инструментов в заголовке главного окна программы и рядом с корневой папкой Конфигурация **ТРМ151** отобразится имя открытого файла.

После загрузки файла конфигурации в полях «Значение» параметров появятся значения, которые были записаны в файле. Далее их можно записать в прибор или отредактировать и потом записать в прибор или в файл.

8.7.4 Сохранение конфигурации в файл

Сохранение конфигурации в файл осуществляется командами из меню Файл Сохранить

(Ctrl+S) или Сохранить как. Также можно воспользоваться кнопкой инструментов. Команда Сохранить как вызывает окно стандартного диалога, где необходимо задать имя и место расположения файла. Команда Сохранить сохраняет файл под существующим именем.

Файл конфигурации имеет расширение *.151.

8.7.5 Считывание конфигурации из прибора

При операции считывания происходит считывание значений параметров из прибора и их отображение в рабочем окне Конфигуратора в определенной папке.

Для считывания конфигурации из прибора предусмотрены три режима: считывание всех параметров из прибора, считывание параметров только текущей папки или режим автоматического чтения.

8.7.5.1 Считывание всех параметров из прибора

Для считывания всех параметров из прибора следует выбрать из меню Прибор команду

Считать все параметры из прибора (Alt+R) или воспользоваться кнопкой *С* на панели инструментов.

Считывание всех параметров из прибора может занять длительное время. В процессе считывания на фоне главного окна программы появится информационное окно со статистическими сведениями о ходе процесса. Его закрытие означает, что процесс считывания параметров из памяти прибора окончен. В дереве параметров отобразятся считанные значения.

8.7.5.2 Режим автоматического чтения

Данный режим позволяет автоматически считать значения параметров, содержащихся в открываемой папке. Такое считывание происходит быстрее, чем считывание всех параметров из прибора.

Считывание параметров в этом режиме возможно, если до этого значения параметров, содержащиеся в этой папке, считаны не были (т.е. в полях «Значение» было указано «Нет данных»).

Для включения режима автоматического чтения следует установить флаг в меню Режимы программы → Режим автоматического чтения.

Примечание – При работе без подключенного прибора Режим автоматического чтения рекомендуется отключить.

8.7.5.3 Считывание параметров только текущей папки

В процессе работы, например, при автонастройке ПИД-регулятора, прибор может изменить значение своих параметров. Они могут не совпасть со значениями, находящимися в Конфигураторе и считанными ранее. Поэтому бывает необходимость обновить информацию в параметрах, находящихся в папке Конфигуратора. При этом режим автоматического чтения не позволяет выполнить эту операцию, т. к. значения параметров в Конфигураторе уже есть.

Для считывания параметров только текущей папки необходимо выделить ее, установив на ней курсор, и выбрать команду Считать все параметры выделенной папки из меню Прибор или нажать кнопку

8.7.6 Редактирование значений параметров

Для изменения значения параметра следует поместить курсор мышки в поле «Значение» этого параметра и два раза нажать правую клавишу, - осуществляется переход в режим редактирования.

Значение задается с клавиатуры (для числового параметра) или выбирается из раскрывающегося списка. Для завершения ввода необходимо нажать кнопку Enter.

Если значение не помещается по ширине колонки, ее можно расширить до нужного размера. Для этого в верхней части экрана курсор помещается на границу двух столбцов в строке с заголовками, находится положение указателя, при котором отобразится двунаправленная стрелка, и, с удержанием нажатой левой кнопки мышки, передвигается граница столбца влево или вправо.

Измененные значения отображаются зеленым цветом и сохраняются только в памяти программы. Далее пользователь можете записать изменения в прибор или сохранить их в файл.

8.7.7 Инициализация прибора

Перед записью новой конфигурации в прибор требуется произвести его инициализацию. Инициализация прибора корректно стирает старую конфигурацию и позволяет записать в него новую. При попытке записать новую конфигурацию без удаления старой может возникнуть конфликт значений параметров, и прибор заблокирует запись части новых параметров.

Функция инициализации доступна только при загрузке Конфигуратора на полном уровне доступа (см. п. 10.5).

Для инициализации прибора следует выбрать из меню Сервис команду

на панели инструментов. Инициализировать прибор или воспользоваться кнопкой

8.7.8 Запись значений параметров в прибор

При операции «Запись» происходит переписывание значений параметров из окна Конфигуратора в прибор.

Пользователь может записать в прибор все параметры, только измененные или те, которые сам выберет для записи. Кроме того, пользователь можете включить режим немедленной записи.

8.7.8.1 Запись всех параметров в прибор

Запись всех параметров в прибор необходимо производить, если Вы хотите сменить модификацию прибора или записать в него нестандартную конфигурацию, созданную компанией-производителем.

Для записи всех параметров в прибор следует выбрать из меню Прибор команду

Записать все параметры в прибор (Alt+W) или воспользоваться кнопкой 🎦 на панели инструментов. На фоне главного окна появится информационное окно со статистическими сведениями о ходе процесса. Его закрытие означает, что процесс записи параметров в память прибора окончен.

8.7.8.2 Запись только отредактированных параметров

Такой способ записи позволяет записать только отредактированные параметры, даже если они находятся в разных папках.

Для записи только отредактированных параметров следует выбрать из меню Прибор команду Записать только измененные из меню Прибор (Alt+U) или воспользоваться кнопкой 瀂 на панели инструментов.

Внимание! Отредактированные значения параметров отображаются зеленым цветом. После записи в прибор цвет всех записанных параметров становится черным.

8.7.8.3 Запись параметров только текущей папки

Пользователь может произвести запись параметров только текущей папки. Такая запись происходит быстрее, чем запись всех параметров.

Для записи параметров только текущей папки необходимо выделить ее, установив на ней курсор, и выбрать команду Записать все параметры выделенной папки (Alt+Ctrl+W) из меню Прибор или нажать кнопку 🔊

8.7.8.4 Запись только отредактированных параметров текущей папки

Для записи только отредактированных параметров текущей папки необходимо выделить ее, установив на ней курсор, и выбрать команду Записать только измененные параметры

папки (Alt+Ctrl+U) из меню Прибор или нажать кнопку 🌋

8.7.8.5 Режим немедленной записи

В данном режиме Конфигуратор записывает значение параметра в прибор сразу после его изменения.

Для включения режима необходимо установить флаг в меню **Режимы программы** -> Режим немедленной записи.

Примечание – При работе без подключенного прибора Режим немедленной записи рекомендуется отключить.

8.8 Просмотр и сохранение параметров текущего состояния

Пользователь может регистрировать на ПК параметры текущего состояния (оперативные параметры) ТРМ151-03, показанные на рисунке 10.7.

8.8.1 Просмотр значений оперативных параметров

Для просмотра значений оперативных параметров следует открыть папку **ОПРОС ОПЕРАТИВНЫХ ПАРАМЕТРОВ** и установить флаги около тех параметров, которые пользователь хочет опрашивать (см. рисунок 8.7). Задается период опроса параметров в миллисекундах. Период опроса по умолчанию составляет 1000 мс.

Конфигуратор ТРМ151: средний уровень досту	па : Модифика	ация Nº1 - Имя н	e 3a,	дано	_OX
Файл Прибор Режимы программы Сервис ⊆правка					
D 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	O AUTO 9	}			
Описание 🔺	Параметр	Значение	A	Э,	Ошибки обмена и несо
🖃 🚵 Конфигурация ТРМ151 (Имя не задано)	harrow and				
😥 🛄 Параметры прибора					
Опрос оперативных параметров					
Имя параметра	Период	Значение			Ошибки ввода-вывода
— 🔽 🔛 Имя файла для сохранения протокола		November09.log			
— 🔽 🏂 Активная программа	1000				
— 🗖 🖄 Активный шаг	1000				
— 🗖 🏝 Состояние объекта	1000				
— □ 1 № 1	1000				
— ☐ 1 Измеритель №2	1000				
— 🗖 🔀 Выходной сигнал №1	1000				
— [] 🔁 Выходной сигнал №2	1000				
— 🖂 🔁 Текущая уставка №1	1000				
— 🗖 🏝 Текущая уставка №2	1000				
🖅 🕮 Параметры компьютера					
For Help, press F1					NUM //

Рисунок 10.7 – Регистрация оперативных параметров в Конфигураторе

В случае, если возникнет ошибка считывания параметра, в таблице будет выведена ее причина, при этом строка параметра помечается красным шрифтом.

- Измеряемые прибором значения выводятся на монитор в преобразованном виде:
- для термопреобразователей и термопар выводится температура, измеренная в градусах по Цельсию;
- для активных датчиков значения пересчитываются в соответствии с единицами диапазона измерения (см. параметры Ain.H и Ain.L)

В процессе измерения прибор контролирует работоспособность датчиков и в случае возникновения аварии выводит причину неисправности в поле «Значение».

Значение выходной мощности Регулятора выводится в диапазоне от 0 до 1.

8.8.2 Сохранение значений оперативных параметров в файл

Для сохранения в файл считанных с прибора значений оперативных параметров следует установить флаг перед строкой **Имя файла для сохранения протокола** (см. рисунок 8.7). Сохранение в файл начнется немедленно.

Протокол сохраняется в текстовый файл с расширением **.log**, который в дальнейшем может быть загружен в любую электронную таблицу. Для загрузки файла в Microsoft Excel можно воспользоваться командой меню **Сервис** — Экспорт протокола измерений в Excel.

По умолчанию программа предлагает имя файла для сохранения, состоящее из текущего месяца и даты. Имя файла указано в поле «Значение». Файл можно переименовать. Для этого необходимо установить курсор на имени файла, дважды нажать на правую клавишу мыши и набрать новое имя. Файл создается в той же папке, где установлена программа «Конфигуратор TPM151».

8.9 Программа «Быстрый старт ТРМ151-03»

Программа «Быстрый старт TPM151-03» предназначена для упрощения первой настройки прибора ОВЕН TPM151-03.

Не рекомендуется использовать программу «Быстрый старт TPM151-03» в следующих случаях:

- при программировании прибора OBEH TPM151-03, конфигурация которого уже была до этого изменена. В этом случае следует использовать программу «Конфигуратор TPM151»;
- при программировании приборов других исполнений ОВЕН ТРМ151-хх. Для каждого ОВЕН ТРМ151-хх существует своя программа быстрого старта. Любую из них пользователь может бесплатно скачать с сайта компании ОВЕН www.owen. ua.

Для запуска программы «Быстрый старт TPM151-03» следует запустить файл EasyGoTRM151-03.exe с диска, входящего в комплект поставки. Далее программа предлагает ряд вопросов, отвечая на которые, пользователь производит конфигурирование прибора.

Соответствие начертания символов на цифровом индикаторе буквам латинского алфавита приведено в таблице 9.1.

Таблица 9.1 – Соответствие начертания символов на цифровом индикаторе буквам латинского алфавита

R b C d E F G H C J E L A n o P 9 r 5 E U u E G E E A b C d E F G H i J K L M n o P 9 r S t U v w X Y Z

9.1 Общие принципы программирования

Общая схема задания параметров приведена на рисунке 9.1.

Рисунок 9.1 – Общая схема задания параметров

9.1.1 Основные правила при работе в Главном меню и при выборе Элемента

Выбор в любом меню осуществляется кнопками 🖄 и 🕅 (🏝) (циклически в любую сторону).

При этом мигает тот ЦИ, на котором изменяется информация.

- _ _ _ _ _ _ _ знак конца списка при циклическом перемещении.
- После того, как пользователь совершает выбор, необходимо нажать кнопку
- Переход на предыдущий уровень всегда осуществляется кнопкой 🔤

ввод

9.1.2 Вход в режим Программирования. Главное меню

Для входа в режим Программирования необходимо нажать комбинацию кнопок Пользователь попадет в Главное меню параметров (рисунок 9.2).

На ЦИ1 отображаются имена папок, в которые сгруппированы параметры.

Кнопками 🖄 и 🖄 осуществляется выбор нужной папки, после чего необходимо нажать кнопку 🔤

9.1.3 Выбор Элемента (Канала, Программы, Шага и т. д.)

Параметры некоторых папок сгруппированы по Элементам (Каналам, Входам, Программам/Шагам и т. д., при этом часть параметров является общей для всех Элементов (см. рисунок 9.1).

На ЦИ1 при выборе отображается обозначение элемента («*СH*» или «*СHR*_n» – Канал, «*Рг*_л*C*» – Программа и т. д.), на ЦИ2 - номер Элемента.

Кнопками 🖄 и 🖄 осуществляется выбор нужного Элемента, после чего необходимо нажать кнопку 🔤

9.1.4 Вход в папку с параметрами. Индикация при задании параметра

При входе в папку на индикаторе отображается информация о первом параметре.

Показания цифровых индикаторов при задании параметров (на примере параметра *5Ł.ŁУ* для Шага № 1 Программы технолога) приведены на рисунке 9.3.

Рисунок 9.3 – Показания цифровых индикаторов при задании параметров

9.1.5 Перемещение между параметрами в папке

- ______ знак конца списка при циклическом перемещении.
- СССО обозначение входа во вложенную папку.
- Пользователь выбирает Элемент (Канал, Шагит. д.) и попадает в папку для этого Элемента, но перемещаться теперь может между параметрами всех Элементов последовательно (циклически в любую сторону):

общие параметры → параметры для Элемента 1 → → параметры для Элемента 2 → ... → общие параметры

9.1.6 Задание значения параметра

- Осуществляется выбор параметра для изменения, после чего нажимается кнопка (рисунок 9.5). При этом начне<u>т мигать</u> значение параметра на ЦИ2.
- Значение задается кнопками 🖄 и 🖄.
- Если параметр числовой, то кнопка א увеличивает, а кнопка уменьшает значение параметра.
- Если нажать кнопку 🖄 или 🖄 и удерживать ее, то изменение значения ускорится.
- После того, как значение задано, нажимается кнопка (для выхода без записи нового значения нажимается кнопка (для выхода без записи). Снова начнет мигать имя параметра на ЦИ1.

Рисунок 9.4 – Перемещение по параметрам папки

Рисунок 9.5 – Изменение значения параметра

9.1.7 Сдвиг десятичной точки

При изменении значения параметра кнопками 🖄 и 🕅 десятичная точка не меняет своего положения, что ограничивает максимальное значение параметра.

Например, на ЦИ2 отображается значение «8.974». При нажатии кнопок 🖄 и 🕅 будет происходить изменение значения, начиная с последнего разряда:

Максимальное значение, которое можно установить на ЦИ2, - «9.999». Для ввода большего числа необходимо сдвинуть десятичную точку.

Для сдвига десятичной точки:

перед началом редактирования значения (т.е. когда на ЦИ1 мигает имя параметра)
 следует нажать и удерживать кнопку (мола). Через некоторое время начнется циклический сдвиг вправо десятичной точки на ЦИ2:

 следует дождаться момента, когда десятичная точка установится в нужное положение, и отпустить кнопку [вод]. Теперь пользователь может отредактировать значение параметра.

9.1.8 Вложенные папки

Некоторые папки имеют в своем составе одну или несколько вложенных папок (например, папка «Регуляторы»).

Вложенная папка обозначается на ЦИ2 знаком [[]]. При этом название папки показано на ЦИ1 (см. рисунок 9.6).

Рисунок 9.6 – Работа с вложенной папкой

Чтобы попасть во вложенную папку следует нажать кнопку

Все операции с параметрами во вложенной папке выполняются так же, как и в основной папке.

9.2 Схемы задания параметров

Подробные схемы задания параметров приведены на рисунках 9.7 – 9.18. Недостающие схемы представлены в других разделах РЭ.

Внимание! Основные параметры конфигурации (в частности, параметры Регуляторов и Выходных элементов) настоятельно рекомендуется задавать с помощью программы «Конфигуратор TPM151».

9.3 Задание параметров программ технолога в режиме «Быстрого» программирования

Задание параметров Программ технолога и Уставок можно производить также в режиме «Быстрого» программирования. Схема режима «Быстрого» программирования представлена на рисунке 9.7.

Для входа в режим «Быстрого» программирования необходимо нажать кнопки

При Входе в режим «Быстрого» программирования во время выполнения программы прибор сразу переходит к параметрам текущего шага, при Входе в режим «Быстрого» программирования из режима **STOP** прибор переходит к параметрам Шага 1 Программы 1.

Рисунок 9.7 – Схема задания параметров программ технолога в режиме Быстрого программирования

Рисунок 9.9 – Схема задания основных параметров конфигурации

Рисунок 9.10 – Схема задания параметров Входов

Рисунок 9.11 – Схема задания параметров Вычислителей

Рисунок 9.12 – Схема задания основных параметров конфигурации (продолжение). Задание параметров регулятора

Рисунок 9.13 – Схема задания основных параметров конфигурации (продолжение). Задание ограничений выходной мощности

Рисунок 9.14 – Схема задания параметров БУИМ

Рисунок 9.15 – Схема задания параметров Программ технолога и Уставок

Рисунок 9.16 – Схема задания параметров Программ технолога и Уставок (продолжение). Задание параметров Уставок на данном Шаге Программы

Рисунок 9.18- Схема доступа к служебным параметрам прибора

10 Эксплуатация прибора

10.1 Включение прибора

После включения в сеть прибор переходит в режим, который описан параметром **Реакция** после восстановления питания bEHv (см. п. 3.1.11).

При первом включении прибор находится в режиме СТОП, для выполнения автоматически установлена первая Программа и первый Шаг.

10.2 Выбор текущей программы и текущего шага для выполнения

В приборе на ЦИ4 всегда отображаются через точку номера текущих Программы и Шага. Именно текущая Программа, начиная с текущего Шага, будет запущена на выполнение при нажатии кнопки literon.

Для того, чтобы выбрать необходимые для выполнения Программу и Шаг, необходимо последовательно выполнить действия, представленные в таблице 10.1.

Таблица 10.1 – Выбор текущей программы и текущего шага

Действия пользователя	Реакция прибора
1. Убедиться, что прибор находится в состоянии СТОП	ци2: 5±<i>а</i>Р.
2. Нажать кнопку (веод и, удерживая ее нажатой, нажать кнопку (стоп)	ЦИ1: 5EL . Прибор перейдет в режим Выбора Программы и Шага
3. Для подтверждения выбора операции по	
смене текущих Программы и Шага нажать	
кнопку вод (для отмены – нажать кнопку выход).	
4. Выбрать с помощью кнопок 🖄 и 赵 объект	
для изменения:	11140 D - C
– номер текущей Программы;	
– номер текущего Шага.	ци2: лэсг.
5. Для подтверждения выбора объекта для	На ЦИ1 начнет мигать изменяемое значение
изменения нажать кнопку	номера Программы или Шага
6. Установить требуемое значение номера	
Программы (Шага) кнопками 🖄 и 🕅	
7. Для подтверждения нового значения нажать	ЦИ1 перестанет мигать.
кнопку ввод (для отмены – нажать кнопку выход).	
8. Для выхода из режима Выбора Программы	
и Шага нажать кнопку выход	

Примечание – При выборе номера программы (*лРгБ*) прибор разрешает выбрать только программы, запуск которых разрешен (установлено значение «Разрешен» в параметре *глРг*).

10.3 Запуск и остановка программы технолога

Независимо от того, выполняется Программа или нет, прибор считывает текущие измерения с подключенных датчиков и отображает их на ЦИ1.

В таблице 10.2 представлены действия пользователя при запуске и остановке программы технолога и реакция прибора на них.

Действия пользователя	Реакция прибора	
Запуск программы технолога	· • • • • • • • • • • • • • • • • • • •	
1. Нажать кнопку топ и удерживать ее нажатой в течение 2-3 с.	ЦИ2: Уставка, при этом светится светодиод «УСТАВКА» или: ЦИ2: время, прошедшее от начала текущего Шага, при этом светится светодиод «ВРЕМЯ ШАГА». Начинает выполняться текущая Программа с текущего Шага (их номера отображаются на ЦИ4 через точку)	
Переход в состояние ПАУЗА и обратно		
1. Нажать кнопки выход + стоп	ЦИ2: Уставка (время шага) → <i>гЦп.Р</i> .	
2. Для выхода из режима ПАУЗА следует еще раз нажать кнопки (накод) + (туск)	ЦИ2: гЦл.Р → Уставка (время шага). Выполнение Программы продолжается	
Принудительная остановка Программы		
1. Нажать кнопку в течение 2-3 с. Выполнение Программы останавливается.	ЦИ2: Уставка (время шага) → 5Łо [₽] . Выполнение Программы останавливается. Прибор переходит в состояние СТОП На ЦИ4 отображаются через точку номера текущих Программы и Шага, которые будут запущены при нажатии кнопки ^{штех}	
Примечание – Если Программа работает	по бесконечному циклу, остановить ее можно	
только принудительно с помощью кнопки стоп.		
Окончание выполнения Программы. Перевод в состояние СТОП		
	После окончания нециклической программы прибор автоматически переходит в состояние КОНЕЦ ПРОГРАММЫ. ЦИ2: Уставка (время шага)→ Елd .	
Для перевода прибора в режим СТОП нажать кнопку стом и удерживать ее нажатой в течение 2-3 с.	ЦИ2: <i>Елd → 5ҍѻҎ</i> . На ЦИ4 восстанавливаются номер Программы и номер Шага, которые были запущены.	

Таблица 10.2 – Запуск и остановка программы технолога

10.4 Режим ручного управления Уставкой

Чтобы ручное изменение Уставки стало доступным, необходимо снять блокировку режима Ручного управления. Для этого следует установить для параметра **Ручное управление** *bL.r* и значение «разрешено» (см. также схему на рисунке 10.1).

🖃 🝰 Конфигурация ТРМ151 (Имя не задано)	
😑 🧰 Параметры прибора	
Блокировки и переключение режимов	
Ручное управление мощностью	bl.ru

В таблице 10.3 представлены действия пользователя в режиме ручного управления Уставкой и реакция прибора на них.

Таолица 10.5 – Гучное управление эставкой				
Действия пользователя	Реакция прибора			
1. Выбрать кнопками 🖄 и 본 Канал для ручного управления	Номер Канала контролируется по свечению светодиода «ВХОД 1» или «ВХОД 2»			
2. Нажать кнопки 🛣 + 🔤 + 🏝 (порядок нажатия важен) для перехода в режим Ручного управления Уставкой	Значение Уставки на ЦИ2 начнет мигать. Засветится светодиод «РУ1» (Канал 1) или «РУ2» (Канал 2)			
 Задать требуемое значение Уставки с помощью кнопок: 	Изменяемое значение Уставки мигает на ЦИ2			
4. Для выхода из режима Ручного управления следует еще раз нажать кнопки 🔛 + 🔤 + 🕅	Значение Уставки перестанет мигать			

Βιμιμος γπροπποιμις Χοτοργοŭ

T-6---- 40.0

Рисунок 10.1 – Схема установки параметра блокировки ручного управления кнопками на лицевой панели прибора

Значение Уставки, которое устанавливается в режиме Ручного управления, должно находиться в границах, заданных параметрами **b.Ch.L и b.Ch.H**. Если пользователь установит значение Уставки, лежащее вне этих границ, то через 3 секунды после отпускания кнопок **м** + **м** или **м** + **м** прибор автоматически восстановит то значение Уставки, которое задано при конфигурировании прибора.

Заданное вручную значение Уставки не заносится в энергонезависимую память. При повторном запуске Программы восстанавливается исходное значение, заданное при конфигурировании прибора.

10.5 Режим ручного управления выходной мощностью

Чтобы ручное изменение выходной мощности Регулятора стало доступным, необходимо снять блокировку режима Ручного управления. Для этого следует установить для параметра **Ручное управление bL.rU** значение «разрешено» (см. также схему на рисунке 10.1).

Внимание! Регулятор автоматически отключается при переходе в режим Ручного управления выходной мощностью.

В таблице 10.4 представлены действия пользователя в режиме ручного управления выходной мощностью и реакция прибора на них.

Таблица 10.4 – Ручное управление выходной мощностью

Действия пользователя	Реакция прибора
1. Нажать кнопки 🖾 + 💌 (порядок нажатия важен) для перехода в режим Ручного управления выходной мошностью.	Значение мощности на ЦИЗ начнет мигать. Засветится светодиод «РУ1»
 Задать требуемое значение мощности с помощью кнопок: 	Изменяемое значение мощности (в %) мигает на ЦИЗ
 Для выхода из режима Ручного управления следует еще раз нажать кнопки	Значение мощности на ЦИЗ перестанет мигать.

10.6 Автоматическая настройка ПИД-регуляторов

Задачей автонастройки ПИД-регулятора (АНР) является определение за короткое время приблизительных параметров настройки Регулятора, которые используются в последующем процессе регулирования.

Особенностью АНР является то, что в ходе ее выполнения возможно регулирующее воздействие на объект в большом диапазоне и с большой скоростью изменения. Это может привести к выходу из строя объекта регулирования, например, вследствие гидравлических ударов или недопустимых температурных напряжений.

10.6.1 Общие правила проведения автонастройки ПИД-регулятора

Процесс автонастройки проходит непосредственно на объекте, поэтому для ее осуществления необходимо иметь сконфигурированный прибор с подключенными к нему датчиками и исполнительными механизмами.

Условия, в которых проводится автонастройка, должны быть максимально приближены к реальным условиям эксплуатации объекта.

В случае если технические условия эксплуатации объекта не допускают изменения регулирующего воздействия в широком диапазоне и со значительными скоростями изменения, то автонастройку следует выполнить в ручном режиме (см. Приложение Ж).

10.6.2 Порядок проведения Автонастройки Регулятора

Конфигурирование прибора для проведения АНР:

 Прибор конфигурируется в соответствии с подключаемыми к нему датчиками и исполнительными механизмами.

 С помощью программыконфигуратора или с помощью кнопок на лицевой панели прибора устанавливаются значения параметра **Y0** [%].

🝰 Конфигурация ТРМ151 (Иня не задано)	
😑 🦲 Паранетры прибора	
😑 🦲 Регуляторы	
😑 🗡 Авт-ая Настройка Регулятора	
🖻 🥮 Параметры настройки	
Авс Уставка или нач.знач.вых.сигнала	YO
Авс Максимально допустимое отклонение регулируемой величины	YdoP
🖃 🧰 Паранетры ИМ	
- 🌱 Тип исполнительного механизма	R.el
- Авс Время полного хода 3х позиционного исп.механизма	t.val
Авс Отклонение мощности на 3-х поз ИМ	P.tol

 Устанавливаются значения параметра YdoP «Максимальное допустимое отклонение». Этот параметр измеряется в единицах регулируемой величины и задает амплитуду ее колебаний;

 Устанавливаются тип исполнительного механизма R.eL — «3-х позиционный» и время полного хода исполнительного механизма из одного крайнего положения в другое t.val, в секундах;

5) В папке «Параметры ИМ» устанавливается значение параметра **Ptol** «Допустимое отклонение мощности», задающего отклонение мощности в процентах от установившегося значения. Рекомендуемый интервал 5—10 %. Меньшее значение следует устанавливать при отсутствии в процессе настройки возмущающих воздействий на объект или при наличии ограничений на условия эксплуатации объекта.

На рисунке 10.2 представлена Схема задания параметров Автонастройки с помощью кнопок на лицевой панели прибора.

Внимание! При запуске автонастройки прибор должен находиться в состоянии СТОП (на ЦИ2 отображается слово «5LoP»).

Операции, выполняемые на объекте:

1) Осуществляется вход в режим Автонастройки, для этого одновременно нажимаются кнопки № + што (порядок нажатия важен). На ЦИ1 отобразится слово «*Ялг*». Следует нажать кнопку подтверждения.

2) По индикации на ЦИ1 кнопками 🖄 и 🕅 выбирается Канал, в котором находится настраиваемый Регулятор. Следует нажать кнопку

3) Управляя исполнительным механизмом с помощью клавиши № или № и контролируя управляющее воздействие по ЦИ2, а регулируемую величину по ЦИ1, стабилизируется ее значение в области, соответствующей регламенту проведения технологического процесса. По окончании

процесса стабилизации следует нажать кнопку ввод для подтверждения.

4) Осуществляется наблюдение за процессом изменения регулируемой величины по ЦИ1 и выходного сигнала регулятора по ЦИ2, при этом должен существовать режим двухпозиционного регулирования с переключением выходного сигнала регулятора между максимальным Pmax = Pstab+P.tol и минимальным Pmin = Pstab-P.tol уровнями, где Pstab – значение выходного сигнала регулятора, при котором был запущен процесс автонастройки (см. предыдущий пункт); P.tol – значение параметра.

5) После завершения настройки, на что укажет мигающее «*donE*» на ЦИ2, следует нажать кнопку . Прибор возвратится из режима Автонастройки в состояние СТОП.

Рисунок 10.2 – Схема задания параметров Автонастройки с помощью кнопок на лицевой панели прибора

10.6.3 Индикация параметров автонастройки

Во время проведения автонастройки на ЦИ1 и ЦИ2 по умолчанию отображаются текущие

значения регулируемой величины и выходного сигнала Регулятора. Нажатием кнопки 🖄 можно отобразить на ЦИ1 и ЦИ2 текущие значения других параметров (см. рисунок 10.3).

Рисунок 10.3 – Схема переключения индикации в режиме Автонастройки

10.6.4 Остановка автонастройки

В таблице 10.5 представлены действия пользователя при остановке автонастройки и реакция прибора на них.

Таблица 10.5 – (Остановка автонастр	ойки
------------------	---------------------	------

Действия пользователя	Реакция прибора	
1. Нажать кнопку высса.	ЦИ1: <i>HRLE.</i> Прибор запрашивает подтверждение выхода.	
2. Для подтверждения выхода следует нажать кнопку (для отмены следует нажать кнопку)	Прибор переходит в Рабочий режим индикации (при отмене – возвращается в режим Автонастройки).	

10.6.4.1 Возможные проблемы при проведении автонастройки

В таблице 10.6 представлены возможные проблемы при проведении автонастройки и способы их устранения.

Таблица 10.6 – Возможные проблемы при проведении автонастройк	Габлица 10.6	- Возможные	проблемы при	проведении автона	стройки
---	--------------	-------------	--------------	-------------------	---------

Проблама	Показа	Показания ЦИ Возможные причины			
проолема	ЦИ2	ЦИ1	возможные причины	способы устранения	
оойка не ается	5£ <i>6</i> 7 (StoP) мигает	<i>5₽.₽⊻</i> (SP.Pw)	Попытка запустить Основную настройку на Шаге, на котором задан Тип уставки «мощность» .	Запустить Программу и Шаг, на котором задан Тип уставки «значение» , или изменить Тип уставки на текущем Шаге	
Автонастр запуска		5 <i>P.R</i> L (SP.AL)	Значение Уставки еще не стабилизировалось.	Дождаться стабилизации значения Уставки (см. ЦИ2) и значения регулируемой величины (см. ЦИ1). После этого продолжить автонастройку	
	<i>FRCL</i> (FAil)	nLīn (n.Lin)	Объект управления существенно нелинеен (нагрев происходит значительно быстрее охлаждения; ИМ выходит на 100 % мощности).	Уменьшить амплитуду воздействия (параметр YdoP) или изменить значение Уставки.	
ршилась		<i>d5⊬о</i> (dSKo)	Число периодов превысило допустимое значение; амплитуды колебаний этих периодов значительно отличаются друг от друга (возможно при сильных помехах)	Увеличить амплитуду воздействий (параметр YdoP) или допуск среднеквадратичного отклонения (параметр dSKo)	
стройка завс неудачно			Период возмущающих колебаний слишком мал	Увеличить интегральную постоянную (параметр £ .)	
Автона		<i>Р</i> Ь (Pb)	Вычисленное значение полосы пропорциональности недопустимо и выходит за пределы [0,0019999]	Увеличить амплитуду воздействий (параметр YdoP) и повторить автонастройку.	
		<i>ЕС</i> (ti)	Вычисленное значение постоянной интегрирования недопустимо и выходит за пределы [065535]	Если она закончится с тем же результатом, использовать двухпозиционный (ON/OFF)	
		<i>Р.Еd</i> (P.C.Ld)	Вычисленное значение коэффициента холодильника недопустимо и выходит за пределы [0,0110,00]	регулятор	

10.7 Аварийные ситуации и их возможные причины

Прибор различает два вида АВАРИИ: Критическую и Некритическую.

10.7.1 Критическая АВАРИЯ

Критическая АВАРИЯ подразумевает невозможность дальнейшей работы Программы. Пример - обрыв термодатчика в канале регулирования температуры.

О Критической АВАРИИ сигнализируют:

- сообщение «*FRLL*» на ЦИ2;
- непрерывное свечение светодиода «АВАРИЯ».

После устранения причины АВАРИИ возможно возобновление работы (переключение в

состояние, предшествовавшее наступлению АВАРИИ). Для этого следует нажать кнопку Если причина АВАРИИ не была корректно устранена, то прибор автоматически вернется в состояние АВАРИЯ.

Для того чтобы принудительно перевести прибор из состояния АВАРИЯ в состояние СТОП (STOP), следует нажать кнопку

Схема управления прибором в состоянии Критической АВАРИИ показана на рисунке 3.9.

10.7.2 Некритическая АВАРИЯ

При Некритической АВАРИИ Программа продолжает выполняться. Прибор выдает предупреждение, и у оператора есть возможность оперативно устранить неисправность до того момента, когда АВАРИЯ станет критической.

О Некритической АВАРИИ сигнализируют:

- сообщение «*Я*L», периодически (с периодом ~2 с) высвечивающееся на ЦИ4;
- мигание светодиода «АВАРИЯ».

Сброс индикации о некритической аварии осуществляется кнопкой

10.7.3 Выяснение причины АВАРИИ

Для того, чтобы выяснить при<u>чин</u>у любой АВАРИИ (Критической или Некритической),

следует нажать и удерживать кнопку 🖾 На ЦИ2 отобразится Код АВАРИИ.

Перечень Кодов АВАРИИ приведен в таблице 10.7.

Таблица 10.7 – Возможные причины аварий

Код АВАРИИ	Причина АВАРИИ		
203	Ошибка измерения при вычислении условия перехода на следующий Шаг		
204, 130	Ошибка конфигурации, не задан или неправильно задан источник сигнала		
	для проверки условия перехода на следующий Шаг		
90	Ошибка конфигурации: «пустого шага» не должно быть		
100	Ошибка измерения		
220	Авария после отключения питания (см. параметр bEHv)		
АВАРИИ, индексир	уемые по Каналам		
80	Ошибочное измерение в состоянии РАБОТА		
192	Не подключено Выходное устройство		
208	Не подключен Регулятор		
Некритические АВАРИИ			
8	Ошибка при работе в режиме Ручного управления		
176	Ошибочное измерение в соседнем Канале		

10.8 Информационные сообщения на цифровых индикаторах

В процессе работы прибор может выводить на цифровые индикаторы информационные сообщения, список которых представлен в таблице 10.8.

Таблица 10.8 –	Список инфо	омационных	сообщений на	а цифровых	индикаторах

Сообщение	ЦИ, на котором отображается сообщение	Описание сообщения
End	ЦИ2	Выполнение Программы закончено
5toP	ЦИ2	Прибор находится в состоянии СТОП
сЦп.P	ЦИ2	Прибор находится в состоянии ПАУЗА
FACL	ЦИ2	Прибор находится в состоянии АВАРИЯ
ACAL AT	ЦИ4	Прибор находится в состоянии Некритической аварии (надпись появляется каждые 2 с)
Pr.SP	ЦИ2	Задана Уставка типа «мощность»
۵FF	ЦИ1	Датчик не подключен
d.oFF	ЦИ1	Датчик не подключен
L.L.L.L.	ЦИ1	Измеренное значение слишком мало
нннн	ЦИ1	Измеренное значение слишком велико
	ЦИ1	Обрыв датчика
0.0.0.0	ЦИ1	Короткое замыкание датчика
no.ER	ЦИ1	Канал регулирования отключен
SEL	ЦИ1	Выбор номера Программы и Шага
00.	ЦИЗ	Выходная мощность 100 %
(точка мигает)		(отображение на двухсимвольном индикаторе)

10.9 Принудительная перезагрузка прибора

Если обнаруживается, что прибор начал в каких-либо режимах работать некорректно (это может случиться, например, при сильных помехах или после переконфигурирования), следует осуществить его перезагрузку.

Для перезагрузки прибора необходимо одновременно нажать кнопки на нажать кнопки на нажать кнопки на нажать кнопки

Примечание – Обычное отключение прибора от питающей сети не приведет к перезагрузке, так как информация о состоянии прибора сохраняется в его памяти в течение примерно 2-х часов.

Если прибор «завис», не перезагружается от нажатия кнопок **на** + **c** + **b** +

11 Техническое обслуживание

Обслуживание прибора в период эксплуатации состоит из периодического технического осмотра, а также поверки его метрологических характеристик.

Технический осмотр прибора должен проводится обслуживающим персоналом не реже одного раза в 6 месяцев и включать в себя выполнение следующих операций:

– очистку корпуса прибора, а также его клеммников от пыли, грязи и посторонних предметов;

проверку качества крепления прибора к щиту управления;

- проверку надежности подключения внешних связей к клеммникам.

Обнаруженные при осмотре недостатки следует немедленно устранять.

Поверка приборов должна производиться не реже одного раза в два года по методике АРАВ.421210.001 МП-2008. Методика поверки поставляется по требованию заказчика.

При выполнении работ по техническому обслуживанию прибора соблюдать меры безопасности, изложенные в разд. 5.

12 Маркировка

На каждый прибор наносятся:

товарный знак предприятия-изготовителя;

-условное обозначение исполнения прибора;

- обозначение степени защиты по ГОСТ 14254;

– знак утверждения типа по ДСТУ 3400;

– национальный знак соответствия (для приборов, прошедших оценку соответствия техническим регламентам);

- род питающего тока, номинальное напряжение или диапазон напряжений питания;

номинальная потребляемая мощность;

- класс электробезопасности по ГОСТ 12.2.007.0;

порядковый номер прибора по системе нумерации предприятия-изготовителя (штрихкод);

– год выпуска;

- схема подключения; поясняющие надписи.

На упаковке указано:

- товарный знак и адрес предприятия-изготовителя;

- наименование и (или) условное обозначение исполнения прибора;

порядковый номер прибора по системе нумерации предприятия-изготовителя (штрихкод);

- дата упаковки.

13 Транспортирование и хранение

Транспортирование и хранение приборов производится согласно требованиям ГОСТ 12997, ГОСТ 12.1.004, НАПБ А.01.001.

Транспортирование приборов осуществляется при температуре окружающего воздуха от минус 25 до 55 °C с соблюдением мер защиты от ударов и вибраций.

Перевозка приборов может осуществляться в транспортной таре поштучно или в контейнерах.

Условия хранения приборов должны соответствовать условиям 1 (Л) по ГОСТ 15150.

В воздухе не должны присутствовать агрессивные пары и примеси.

Приборы следует хранить на стеллажах.

14 Комплектность

Прибор	1 шт	
Комплект монтажных элементов	1 к-т	
Руководство по эксплуатации	1 экз	s.
Паспорт и гарантийный талон	1 экз	s.
Программа конфигурирования на компакт-диске	1 шт	
Методика поверки (по требованию Заказчика)	1 экз	š.,

Примечание – Изготовитель оставляет за собой право внесения дополнений в комплектность изделия.

Приложение А Габаритные размеры

Рисунок А.2 – Прибор щитового крепления Щ1

Приложение Б Подключение прибора

Рисунок Б.3 – Схемы подключения различных типов ВЭ2 80

выход 2

выход 2

выход 2

выход 2

Приложение В Программируемые параметры

Таблица В.1 – Список программируемых параметров

14.4	Haanauwa	Допустимые значения			
ИМЯ	пазвание	симв. на ПИ2	Значения (в Конфигураторе)		
ОБШИЕ ПАРАМЕТРЫ					
dEv	Название прибора		Устанавливает изготовитель		
vEr	Версия ПО		Устанавливает изготовитель		
	ПАРАМЕТРЬ		IM		
Обш	ие параметры программ				
t.SCL	Масштаб времени	Haia	Часы-минуты		
	·	ā SEC	Минуты-секунды		
Прог	рамма №	/ *			
rnPr	Разрешение запуска программы	Π	Разрешить		
		- 1	Запретить		
Прог	рамма №\ Шаг №				
St.tY	Тип шага	Ы	Обычный шаг		
		Γοοο	Шаг с переходом		
		00	Конец программы		
LG.PS	Логика перехода на следующий	57	По значению		
	шаг	t oF	По времени		
		Rod	По значению И времени		
		<u>ог</u>	По значению ИЛИ времени		
Sn.PS	Условие при переходе «по	1F5P	Величина in.PS < значения		
	значению»	GE.SP	Величина in.PS > значения		
in.PS	Номер входа, величина с которого	FFم	Вход не назначен		
	должна достичь «значения» SP.PS	1	Вход №1		
		2	Вход №2		
SP.PS	«Значение» для перехода		-99999999		
t.PS	Длительность шага		0.01092.15		
	ΠΑΡΑΜΕΤΡ	Ы ВХОДОЕ	3		
Общие па	араметры входов	-			
CjC	Автоматическая коррекция по	FF	Выключена		
	температуре свободных концов ТП	חם	Включена		
Вход №.					
in-t	Тип датчика	FFے	Датчик отключен		
		r.426	Cu 100 (α = 0,00426 °C ⁻¹)		
		r425	Cu 50 (α = 0,00426 °C ⁻¹)		
		r.385	Pt 100 (α = 0,00385 °C ⁻¹)		
		r.39 (100 Π (α = 0,00391 °C ⁻¹)		
		E_L	TXK (L)		
		ΕΥ	TXA (K)		
		<u>U-50</u>	Датчик –50…+50 мВ		
		r 385	Pt 50 ($\alpha = 0.00385 ^{\circ}\text{C}^{-1}$)		
) EE n	50 Π (α = 0,00391 °C ⁻¹)		
		r428	$50 \text{ M} (\alpha = 0.00428 \text{ °C}^{-1})$		

Допустимые значения Имя Симв. Название Значения (в Конфигураторе) на ЦИ2 Датчик 4...20 мА 24.20 Датчик 0...20 мА 20.20 Датчик 0...5 мА 205 Датчик 0...1 В UD ($100 \text{ M} (\alpha = 0.00428 \,^{\circ}\text{C}^{-1})$ r.428 TCM с $R_0 = 53$ и $W_{100} = 1,4260$ r-23 TITP (B) Е__Ь TUU (S) E_5 TIII (R) E__r THH (N) E____ ТЖК (J) Ε ERI TBP (A-1) TBP (A-2) E_R2 TBP (A-3) E R3 TMK (T) E__t P.r0.9 Датчик положения резистивный 900 OM Датчик положения с токовым P0.20 выходом 0..20 мА или 4...20 мА Датчик положения с токовым P0.5 выходом 0..5 мА Eont * Датчик контактный 100 H ($\alpha = 0.00617 \,^{\circ}\text{C}^{-1}$) г.Б (7 Cu 500(α = 0.00426 °C⁻¹ £425 500 M (α = 0,00428 °C⁻¹) £428 Pt 500 ($\alpha = 0.00385 \,^{\circ}\text{C}^{-1}$) *E38*5 500 Π (α = 0.00391 °C⁻¹) £39 (500 H ($\alpha = 0.00617 \,^{\circ}\text{C}^{-1}$) £6 (7 Cu 1000 ($\alpha = 0.00426 \circ C^{-1}$) £.426 E.428 1000 M ($\alpha = 0.00428 \,^{\circ}\text{C}^{-1}$) Pt 1000 ($\alpha = 0.00385 \,^{\circ}\text{C}^{-1}$) £.385 1000 Π (α = 0,00391 °C⁻¹) E.39 (1000 H(α = 0,00617 °C⁻¹) *Е.Б (*7 Датчик положения резистивный P. r 2.0 2000 Ом * - В приборе ОВЕН ТРМ 151-03 эти датчики не используются in.Fd Постоянная времени цифрового 0...1800 [c] фильтра in.FG Полоса цифрового фильтра 0...9999 [ед. изм.] itrL Период опроса датчика 0,3...30 [c] in.SH -999...9999 [ед. изм.] Сдвиг характеристики датчика in.SL Наклон характеристики датчика 0.9...1.1 Ain.L Нижняя граница диапазона -999...9999 [ед. изм.] измерения (только для активных датчиков) Ain.H Верхняя граница диапазона -999...9999 [ед. изм.] (только для активных датчиков) измерения

Продолжение таблицы В.1

Продолжение таблицы В.1

			Допустимые значения		
Имя	Название	Симв. на ЦИ2	Значения (в Конфигураторе)		
ПАРАМЕТРЫ ВЫЧИСЛИТЕЛЯ					
CAL.t	Формула вычислителя	rEPt SU Sar topt Rott Rott Rott FF	Повторитель Взвешенная Сумма Квадратный корень Частное Максимум Минимум Среднее Арифметическое Вычислитель влажности Вычислитель отключен		
A.ist	Психрометрический коэффициент		00640.14		
	для расчета влажности				
CL.Fd	I юстоянная времен цифрового фильтра		01800 [сек]		
CL.FG	Полоса цифрового фильтра		09999		
dP	Кол-во знаков после десятичной точки на индикаторе		03		
n.in.C	Количество аргументов вычислителя		1,2		
t.in.1	Тип аргумента №1 вычислителя	dAt FLtr	Датчик Сетевой фильтр		
In.1	Номер (считая от 0) Входа	<u></u> Г	ВХОД №1 ВХОД №2		
SCA1	Весовой коэф. Для формулы «взвешенная сумма»		-1001000		
t.in.2	Тип аргумента №2 вычислителя		ВХОД №1 ВХОД №2		
In.2	Номер (считая от 0) Входа		1,2		
SCA2	Весовой коэф. Для формулы «взвешенная сумма»		-1001000		
	ПАРАМЕТРЫ	РЕГУЛЯТО	PA		
Регулято	р № …\ПИД-регулятор				
Pb	Полоса пропорциональности		19999 [ед. изм.]		
ti	Интегральная постоянная		065535		
td.ti	Отношение дифференциальной		00.3		
	постоянной к интегральной				
i.UPr	Ограничение максимума интеграла		-100100 [ед. изм.]		
i.min	Ограничение минимума интеграла		-100100 [ед. изм.]		
P.nom	Номинальная мощность	L	-100100 [ед. изм.]		
Регулято	р № …\Автонастройка	1			
YO	уставка автонастройки	 	-99999999 [ед. изм.]		
YdoP	максимально допустимое отклонение регулируемой величины		0999 [ед. изм.]		
t.vAL	Время полного хода 3-х позиционного ИМ		0:01999 [ед. изм.]		

Продолжение таблицы В.1

			Допустимые значения
Имя	Название	Симв.	Значения (в Конфигураторе)
		на ЦИ2	эпачения (в конфигураторе)
	ПАРАМЕТР	Ы УСТАВОІ	K
Уставки	регулятора № \ Уставки в программ	ие №… \Уст	авка на шаге №…
LF.LU	Скорость выхода на уставку		09999 [ед. изм./мин]
PSP	Тип уставки	ыЯL	Значение
		Po	Мощность
b.CH.L	Нижняя граница задания уставки		–99999999 [ед. изм.]
b.CH.H	Верхняя граница задания уставки		–99999999 [ед. изм.]
SP.LU	Значение уставки		–99999999 [ед. изм.]
	ПАРАМЕТРЫ ОГРАНИЧЕНИ	1Я ВЫХОДН	ЮЙ МОЩНОСТИ
От регуля	ятора №…		
P.rES	Максимальная скорость изменения		0100 [%/мин]
	выходной мощности		
P.UPr	Максимальная выходная мощность		–100100 [%]
P.min	Минимальная выходная мощность		–100100 [%]
Г	ІАРАМЕТРЫ БЛОКА УПРАВЛЕНИЯ И	СПОЛНИТЕ	ЛЬНЫМИ МЕХАНИЗМАМИ
db.F	Зона нечувствительности для задвижек		0.0510 [%]
DLP	Наличие датчика положения	na	Нет
	задвижек	YE5	Есть
i.DP	Номер входа датчика положения	Π	– ВХОД №1
		1	– ВХОД №2
t.StP	Мин. время остановки задвижки		0:0116:39 [мин]
TP.L	Мин.время работы задвижки		0.110 [сек]
Tp.H	Полное время хода задвижки		0:1166:9 [мин]
TFP	Время выборки люфта		0.110 [сек]
LSP	Исходное положение задвижки в %		0100 [%]
	СЕТЕВЫЕ ПАРА	ИЕТРЫ ПРИ	БОРА
bPS	Скорость обмена данными		2400, 4800, 9600, 14400, 19200,
			28800, 38400, 57600, 115200 [бит/с]
LEn	Длина слова данных		7 или 8 [бит]
PrtY	Контроль четности	na	Отсутствует
		EuEn	Четность
		odd	Нечетность
Sbit	Количество стоп-бит в посылке		1 или 2
A.LEn	Длина сетевого адреса		8 или 11 [бит]
Addr	Базовый адрес прибора		02047
rS.dL	Время задержки ответа прибора		050 [мс]

Окончание таблицы В.1

			Допустимые значения
Имя	мя Название		Значения (в Конфигураторе)
	СЛУЖЕБНЫЕ ПАР	АМЕТРЫ ПР	РИБОРА
behv	Реакция на случайное отключение питания	гЦп Р (5 (5toP FRCL	Возврат в тот же режим Старт Прогр. 1 Шаг1 Переход в «СТОП» Переход в «АВАРИЯ»
doG	Количество сбросов по watchdog		09999
220	Количество случайных отключений питания		09999
rES	Общее количество сбросов		09999
r.SrC	Причина последнего пересброса		Ручной (внешний) перезапуск Отключилось питание Самопроизвольный watchdog
bL.rU	Ручное управление	0 1	Разрешено Запрещено

Приложение Г Некоторые типы первичных преобразователей

Г.1 Термопреобразователи сопротивления

ТС применяются для измерения температуры окружающей среды в месте установки датчика. Принцип действия таких датчиков основан на существовании у ряда металлов воспроизводимой и стабильной зависимости активного сопротивления от температуры. В качестве материала для изготовления ТС в промышленности чаще всего используется специально обработанная медная (для датчиков ТСМ) или платиновая (для датчиков ТСП) проволока.

Выходные параметры TC определяются их номинальными статическими характеристиками, стандартизованными ГОСТ ДСТУ 6651. Основными параметрами HCX являются: начальное сопротивление датчика \mathbf{R}_0 , измеренное при температуре 0°С, и температурный коэффициент сопротивления α , определяемый как отношение разницы сопротивлений датчика, измеренных при температуре 100 и 0 °С, к его сопротивлению, измеренному при 0 °С (\mathbf{R}_0), деленным на 100 °С. В связи с тем, что HCX термопреобразователей сопротивления – функции нелинейные (для TCM в области отрицательных температур, а для TCП во всем диапазоне), в приборе предусмотрены средства для линеаризации показаний.

Во избежание влияния сопротивлений соединительных проводов на результаты измерения температуры, подключение датчика к прибору следует производить по трехпроводной схеме. При такой схеме к одному из выводов TC подключаются одновременно два провода, соединяющих его с прибором, а к другому выводу – третий соединительный провод (см. рисунок Г.1).

Рисунок Г.1 – Подключение ТС по трехпроводной схеме

Для полной компенсации влияния соединительных проводов на результаты измерений необходимо, чтобы их сопротивления были равны друг другу (достаточно использовать одинаковые провода равной длины). В некоторых случаях возникает необходимость подключения TC не по трехпроводной, а по двухпроводной схеме, например, с целью использования уже имеющихся на объекте линий связи. Такая схема соединения также может быть реализована, но при условии обязательного выполнения работ по Приложению Д.

Г.2 Термоэлектрические преобразователи

ТП так же, как и термопреобразователи сопротивления, применяются для измерения температуры. Принцип действия ТП основан на эффекте Зеебека, в соответствии с которым нагревание точки соединения двух разнородных проводников вызывает на противоположных концах этой цепи возникновение электродвижущей силы – термоЭДС. Величина термоЭДС изначально определяется химическим составом проводников и, кроме этого, зависит от температуры нагрева.

НСХ ТП различных типов стандартизованы по ДСТУ 2837. Так как характеристики всех ТП в той или иной степени являются нелинейными функциями, в приборе предусмотрены средства для линеаризации показаний.

Точка соединения разнородных проводников называется рабочим спаем ТП, а их концы – **свободными концами** или иногда «холодным спаем». Рабочий спай ТП располагается в месте, выбранном для контроля температуры, а свободные концы подключаются к измерительному прибору.

Если подключение свободных концов непосредственно к контактам OBEH TPM151 не представляется возможным (например, из-за их удаленности друг от друга), то соединение TП с прибором необходимо выполнять при помощи компенсационных термоэлектродных проводов или кабелей, с обязательным соблюдением полярности их включения. Необходимость применения таких проводов обусловлена тем, что ЭДС TП зависит не только от температуры рабочего спая, но и от температуры ее свободных концов, величину которой контролирует специальный датчик, расположенный в приборе. При этом использование термоэлектродных кабелей позволяет увеличить длину проводников TП и «перенести» ее свободные концы к клеммнику OBEH TPM151.

Пример схемы подключения ТП к входу 1 прибора представлен на рисунке Г.2.

Рисунок Г.2 – Подключение ТП

Внимание! Для работы с прибором могут быть использованы только ТП с изолированными и незаземленными рабочими спаями, так как отрицательные выводы их свободных концов объединены между собой на входе в ОВЕН ТРМ151.

Приложение Д Подключение термопреобразователей сопротивления по двухпроводной схеме

Д.1 Как указывалось ранее, применяемые в качестве датчиков термопреобразователи сопротивления должны соединяться с входами OBEH TPM151-03 по трехпроводной схеме, использование которой нейтрализует влияние сопротивления соединительных проводов на результаты измерения. Однако в технически обоснованных случаях (например, когда установка прибора производится на объектах, оборудованных ранее проложенными монтажными трассами) такое соединение может быть выполнено и по двухпроводной схеме.

При использовании двухпроводной схемы следует помнить, что показания прибора в некоторой степени будут зависеть от изменения температуры среды, окружающей линию связи «датчик-прибор».

Пример подключения термопреобразователя сопротивления к контактам «Вход 1» приведен на рисунке Д.1.

При использовании двухпроводной схемы перед началом эксплуатации прибора необходимо выполнить действия, указанные в п. Д.2-Д.8.

Д.2 Произвести подключение датчика по двухпроводной схеме к соответствующему входу прибора, аналогично тому, как это указано в примере на рисунке Д.1.

Рисунок Д.1 – Подключение ТС по двухпроводной схеме ко Входу 1

Д.3 Подключить к линии связи «датчик–прибор» (к противоположным от прибора концам линии) вместо термопреобразователя магазин сопротивления типа Р4831 (или подобный ему с классом точности не хуже 0,05).

Д.4 Установить на магазине значение, равное сопротивлению термопреобразователя при температуре 0°С (50,000 или 100,000 Ом в зависимости от типа применяемого датчика).

Д.5 Включить питание прибора и на соответствующем канале по показаниям индикатора ЦИ1 зафиксировать величину отклонения температуры от значения 0,0 °С. Полученное отклонение всегда должно иметь положительное значение, а величина его будет зависеть от сопротивления линии связи «датчик–прибор».

Д.6 Установить для данного датчика параметром Сдвиг характеристики **in.SH** коэффициент коррекции, равный значению, зафиксированному при выполнении работ по п. Д.5 (отклонение показаний ЦИ1 от 0,0 °C), но взятому с противоположным знаком, т. е. со знаком «минус».

Пример – После подключения к входу второго канала термопреобразователя сопротивления по двухпроводной схеме и выполнения работ по п. Д.5 на индикаторе ЦИ1 зафиксированы показания 12,6 °C. Для компенсации сопротивления линии связи значение программируемого параметра **in.SH** датчика третьего канала следует установить равным –012,6.

Д.7 Проверить правильность задания коррекции, для чего, не изменяя сопротивления на магазине, перевести прибор в режим РАБОТА и убедиться, что показания на соответствующем канале индикатора ЦИ1 равны 0 °C (с абсолютной погрешностью не хуже 0,2 °C).

Д.8 Отключить питание прибора. Отсоединить линию связи «датчик–прибор» от магазина сопротивления и подключить ее к термопреобразователю.

Д.9 Если ко второму входу прибора также необходимо подсоединить термопреобразователь сопротивления по двухпроводной схеме, выполните п. Д.2–Д.8 для входа 2.

Приложение E Цифровая фильтрация и коррекция измерений

Е.1 Цифровая фильтрация измерений

Е.1.1 Для ослабления влияния внешних импульсных помех на эксплуатационные характеристики прибора в программу его работы введена цифровая фильтрация результатов измерений.

Фильтрация осуществляется независимо для каждого Входа и проводится в два этапа.

Е.1.2 На первом этапе фильтрации из текущих измерений входных параметров отфильтровываются значения, имеющие явно

выраженные «провалы» или «выбросы».

Для этого прибор вычисляет разность между результатами измерений входной величины, выполненных в двух последних циклах опроса, и сравнивает ее с заданным значением, называемым Полосой фильтра.

🖃 🝰 Конфигурация ТРМ151 (Имя не задано)				
😑 🦲 Параметры прибора				
🚍 🧰 Входы				
Авс Постоянная времени цифрового фильтра				
Авс Полоса цифрового фильтра	in.FG			

Если вычисленная разность превышает заданный предел, то производится повторное измерение. В случае помехи этот факт подтвердится повторным измерением и ложное измерение аннулируется. Такой алгоритм позволяет защитить прибор от воздействия единичных импульсных и коммутационных помех, возникающих на производстве при работе силового оборудования.

Полоса фильтра задается в единицах измеряемой величины параметром in.FG для каждого Входа.

Следует иметь в виду, что чем больше значение Полосы фильтра, тем лучше помехозащищенность измерительного канала, но при этом (из-за возможных повторных измерений) хуже реакция прибора на быстрое фактическое изменение входного параметра. Поэтому при задании Полосы фильтра следует учитывать максимальную скорость изменения контролируемой величины, а также установленную для данного Датчика периодичность опроса.

При необходимости данный фильтр может быть отключен установкой нулевого значения параметра in.FG.

Е.1.3 **На втором этапе фильтрации** осуществляется сглаживание (демпфирование) сигнала с целью устранения шумовых составляющих.

Основной характеристикой сглаживающего фильтра является Постоянная времени фильтра – интервал, в течение которого сигнал достигает 0,63 от значения каждого измерения.

Постоянная времени фильтра задается в секундах параметром in.FD для каждого Входа.

Следует помнить, что увеличение значения Постоянной времени фильтра улучшает помехозащищенность канала измерения, но одновременно увеличивает его инерционность, т. е. реакция прибора на быстрые изменения входной величины замедляется.

При необходимости данный фильтр может быть отключен установкой нулевого значения параметра in.FD.

Временные диаграммы работы цифровых фильтров представлены на рисунке Е.1.

Рисунок Е.1 – Временные диаграммы работы Цифровых фильтров

Е.2 Коррекция измерительной характеристики датчиков

Е.2.1 Для устранения начальной погрешности преобразования входных сигналов и погрешностей, вносимых соединительными проводами, измеренные и отфильтрованные прибором значения могут быть откорректированы.

В OBEH TPM151 для каждого Входа есть два типа коррекции, с помощью которых можно осуществлять сдвиг и изменение наклона измерительной характеристики.

Е.2.2 Сдвиг характеристики осуществляется путем прибавления к измеренной величине значения, заданного параметром in.SH для данного Входа. Значение Сдвига характеристики датчика задается в единицах измерения физической величины и служит для устранения влияния начальной и

🖃 🝰 Конфигурация ТРМ151 (Имя не задано)	
😑 🧰 Параметры прибора	
😑 🛄 Входы	
. Bxog №**	
Авс Коррекция "сдвиг характеристики"	in.SH
Авс Коррекция "наклон характеристики"	in.SL

служит для устранения влияния начальной погрешности первичного преобразователя (например, значения R₀ у термопреобразователей сопротивления).

Примечание – При работе с платиновыми термопреобразователями сопротивления на заданное в параметре **in.SH** значение сдвига накладывается также коррекция нелинейности HCX датчика, заложенная в программе обработки измерений.

Пример сдвига измерительной характеристики графически представлен на рисунке Е.2.

Е.2.3 Изменение наклона характеристики осуществляется путем умножения измеренной величины на поправочный коэффициент β, значение которого задается для каждого Датчика параметром in.SL. Данный вид коррекции может быть использован для компенсации погрешностей самих Датчиков (например, при отклонении у термопреобразователей сопротивления параметра α от стандартного значения) или погрешностей, связанных с разбросом сопротивлений шунтирующих резисторов (при работе с преобразователями, выходным сигналом которых является ток).

Значение поправочного коэффициента β задается в безразмерных единицах в диапазоне 0,900...1,100 и перед установкой может быть определено по формуле:

$\beta = \Pi_{\phi a \kappa \tau} : \Pi_{\mu 3 M},$

где β – значение поправочного коэффициента, устанавливаемого параметром in.SL; П_{факт} – фактическое значение контролируемой входной величины;

Пизм – измеренное прибором значение той же величины.

Пример изменения наклона измерительной характеристики графически представлен на рисунке Е.3.

Определить необходимость введения поправочного коэффициента можно, измерив максимальное или близкое к нему значение параметра, где отклонение наклона измерительной характеристики наиболее заметно.

Внимание! Задание корректирующих значений, отличающихся от заводских установок (in.SH = 000.0 и in.SL = 1.000), изменяет стандартные метрологические характеристики ОВЕН ТРМ151 и должно производиться только в технически обоснованных случаях квалифицированными специалистами.

Приложение Ж ПИД-регулятор и параметры его настройки

Конфигурация ТРМ151 (Имя не задано)

🗄 🚾 ПИД-Регулятор

Авс Полоса пропорциональности

Авс td/ti - отношение ПД к ПИ

Авс Постоянная интегрирования ti

Pb

ti

td.ti

😑 🦲 Параметры прибора

🖻 🧰 Регуляторы

Ж.1 Общие принципы ПИД-регулирования. Параметры ПИД-регулятора

Ж.1.1 ПИД-регулятор и его коэффициенты

ПИД-регулятор (пропорциональноинтегрально-дифференциальный регулятор) выдает аналоговое значение выходного сигнала, направленное на уменьшение отклонения текущего значения контролируемой величины от Уставки.

Выходной сигнал ПИД-регулятора Y_i рассчитывается по формуле:

$$Y_i = \frac{1}{X_p} \cdot \left[E_i + \tau_{\mathrm{II}} \cdot \frac{\Delta E_i}{\Delta t_{\mathrm{HSM}}} + \frac{1}{\tau_{\mathrm{II}}} \sum_{i=0}^n E_i \, \Delta t_{\mathrm{HSM}} \right]$$

где Х_р –полоса пропорциональности;

Е_i – разность между Уставкой и текущим значением T_i контролируемой величины, или рассогласование;

τ_д – дифференциальная постоянная;

 ΔE_i – разность между двумя соседними измерениями E_i и E_{i-1} ;

 $\Delta t_{_{\text{ИЗМ}}}$ – время между двумя соседними измерениями T_i и T_{i-1};

 $\sum_{i=0}^{N} E_{i}$ – накопленная в і-й момент времени сумма рассогласований (интегральная

сумма).

Как видно из формулы, сигнал управления является суммой трех составляющих:

- пропорциональной (1-е слагаемое);
- интегральной (3-е слагаемое);
- дифференциальной (2-е слагаемое).

Пропорциональная составляющая зависит от рассогласования Е, и отвечает за реакцию на мгновенную ошибку регулирования.

Интегральная составляющая содержит в себе накопленную ошибку регулирования

 $\sum E_i ext{$\Delta t_{{}_{\text{ИЗМ}}}$}$ и позволяет добиться максимальной скорости достижения уставки.

Дифференциальная составляющая зависит от скорости изменения рассогласования $\Delta E_t / \Delta t_{\text{изм}}$ и позволяет улучшить качество переходного процесса.

Для эффективной работы ПИД-регулятора необходимо подобрать для конкретного объекта регулирования значения коэффициентов ПИД-регулятора X_p , τ_u и τ_d (соответственно, параметры **Pb, ti** и **td.ti**, последний задается как отношение τ_d/τ_u).

Настройку ПИД-регулятора рекомендуется выполнять в автоматическом режиме (см. п. 10.6). При настройке вручную Вы можете определить приблизительные значения параметров ПИД-регулятора по Приложению Ж.2.

Ж.1.2 Номинальная выходная мощность. Ограничение накопления интегральной составляющей

Поведение объекта при классическом ПИДрегулировании представлено на рисунке Ж.1, тонкая линия.

Как видно, при длительном выходе на уставку ПИД-регулятор производит «перерегулирование» объекта. «Перерегулирование» связано с тем, что в процессе выхода на уставку накопилось очень

🖃 🝰 Конфигу	рация ТРМ151 (Имя не задано)	
📄 🦲 Пара	метры прибора	
😑 🧰 P	егуляторы	
• E	Б Регулятор № ++	
1	Б ПИД-Регулятор	
	Авс Ограничение максимума интеграла	i.Upr
	Авс Ограничение минимума интеграла	i.min
	Авс Номинальная мощность	P.nom

большое значение интегральной составляющей в выходном сигнале регулятора (мощности).

После «перерегулирования» начинается уменьшение значения интегральной составляющей, что, в свою очередь, приводит к провалу ниже уставки – «недорегулированию». Только после одного-двух таких колебаний ПИД-регулятор выходит на требуемое значение мощности.

Во избежание «перерегулирования» и «недорегулирования» необходимо ограничить сверху и снизу значение накопленной интегральной составляющей.

Пример. Имеется печь, для которой из опыта известно, что для поддержания определенной уставки требуется мощность от 50 % до 70 %. Разброс мощности в 20 % вызван изменениями внешних условий, например температуры наружного воздуха. Тогда, вводя ограничение интегральной составляющей, т. е. задав параметры *i.min* = 50 % и = 70 %, мы можем уменьшить «перерегулирование» и «недорегулирование» в системе (см. рисунок Ж.1, толстая линия).

Важно! Следует понимать, что ограничения параметров i.min и i.UPr распространяются только на интегральную составляющую. Конечное значение выходной мощности, полученное как сумма пропорциональной, дифференциальной и интегральной составляющих, может лежать вне пределов, заданных i.min и i.UPr. Ограничение конечного значения выходной мощности в системе задается параметрами P.min и P.UPr (см. п. 3.1.6.2).

Для уменьшения колебаний при переходных процессах можно также задать номинальную мощность. Номинальная мощность – это средняя мощность, которую надо подать в объект регулирования для достижения требуемой уставки. В нашем примере номинальную мощность **Р.nom** нужно задать равной 60 %. Тогда при работе к значению выходной мощности, рассчитанной ПИД-регулятором, будет прибавляться номинальная мощность. При задании номинальной мощности параметры ограничения интеграла необходимо задать от значения

P.nom. В нашем примере для достижения значения интегральной составляющей от 50 % до 70 % и при **P.nom** = 60 % необходимо задать **i.min** = -10 %, а **i.UPr** = +10 %.

Работа системы с заданной номинальной мощностью и ограничениями интегральной составляющей показана на рисунке Ж.2. Как видно из рисунка, переходный процесс протекает несколько быстрее, т. к. значение выходной мощности сразу начинает расти от **P.nom**, а не от нулевого значения. Также задание **P.nom** необходимо при использовании ПД-регулятора.

Ж.2 Определение параметров предварительной настройки регулятора

Приведенный ниже метод позволяет определить приблизительные параметры настройки регулятора для обеспечения возможности последующего применения **Точной автонастройки**. Это бывает необходимо в случае, если проведение предварительной настройки в автоматическом режиме недопустимо.

Грубая оценка параметров регулятора основана на временных характеристиках переходной функции объекта регулирования. Для снятия переходной функции объект выводят в рабочую область в ручном режиме, дожидаются стабилизации регулируемой величины и вносят возмущение изменением управляющего воздействия на ΔР, [% от диапазона изменения управляющего воздействия]. Строят график переходной функции (см. рисунок Ж.З).

Рисунок Ж.3 – График переходной функции

Используя график, вычислить:

$$\mathbf{t}_{\mathrm{o}\mathrm{f}} = \mathbf{t}_1 - \mathbf{\tau},$$

$$V_{ob} = (T_2 - T_1)/(t_{o6} \times \Delta P),$$

$$\tau_i = 4\tau$$
,

$$X_p = 2 \times \tau \times v_{ob},$$

где:	Xp	-	полоса пропорциональности, ед. изм./%;					
	τ	-	постоянная запаздывания, с;					
	t _{oð}	-	постоянная времени объекта, с;					
	V _{ob}	-	максимальная скорость изменения регулируемой величины					
	нении задания на один процент, ед. изм./%/с;							
	 т і постоянная, с; 							
	T ₂	 установившееся значение регулируемой величины, ед. изм.; 						

T₁	-	начальное значение, ед. изм
1	-	начальное значение, ед. изм

ΔР – изменение управляющего воздействия, %.

Коэффициент τ_д/τ_и (параметр td.ti), определяющий долю дифференциальной составляющей, выбирается из интервала [0,1...0,25].

Конкретное значение τ_{a}/τ_{u} задается с учетом реальных условий эксплуатации и характеристик используемых технических средств. Для того, чтобы определить оптимальное значение τ_{a}/τ_{u} , необходимо сопоставить работу системы в реальных условиях эксплуатации при двух-трех различных значениях τ_{a}/τ_{u} (например, при $\tau_{a}/\tau_{u} = 0,1; 0,15$ и 0,25).

По умолчанию введено значение $\tau_{g}/\tau_{u} = 0,15$.

Приложение И Краткое описание исполнений ОВЕН ТРМ151

И.1 Прибор OBEH TPM151 выпускается в нескольких исполнениях. Смена исполнения прибора осуществляется с помощью программы «Конфигуратор TPM151» путем записи в прибор соответствующего файла (см. п. 8.7.2). При этом следует учитывать, что лицевые панели приборов разных исполнений могут отличаться.

Кроме того, пользователь может создать заказную конфигурацию прибора OBEH TPM151, сочетающую в себе элементы разных исполнений. Пользователь можете сделать это самостоятельно или воспользоваться услугами компании OBEH, обратившись по адресу support@owen.ua.

Перед созданием собственного исполнения необходимо изучить описание базового прибора OBEH TPM151 на компакт-диске, поставляемом в комплекте с прибором.

OBEH TPM151-01. Два канала пошагового регулирования по измеренной величине, каждый Канал подключен к своему Выходному элементу. Регулятор может работать в режимах ПИД и ON/OFF.

Рисунок И.1 – ОВЕН ТРМ151-01

ОВЕН ТРМ151-03. Одноканальное пошаговое регулирование. Управление задвижкой с датчиком положения или без него.

Рисунок И.2 - ОВЕН ТРМ151-03

OBEH TPM151-04. Одноканальное пошаговое регулирование по измеренной или вычисленной величине. Имеется блок контроля нахождения величины в допустимых границах (Инспектор). Сигнал от Инспектора подается на Выходной элемент 2, к которому подключается средство аварийной сигнализации (лампа, звонок и т. д.).

Рисунок И.3 – ОВЕН ТРМ151-04

OBEH TPM151-05. Одноканальное пошаговое регулирование, при этом Уставка Регулятора может быть скорректирована по определенной функции от значения, измеренного на Входе 2. Имеется блок Инспектора, соединенный с ВЭ2.

Рисунок И.4 - ОВЕН ТРМ151-05

OBEH TPM151-06. Одноканальное пошаговое регулирование задвижкой без датчика положения. При этом Уставка Регулятора может быть скорректирована по определенной функции от значения, измеренного на Входе 2.

Рисунок И.5 - ОВЕН ТРМ151-06

OBEH TPM151-07. Одноканальное пошаговое регулирование по измеренной или вычисленной величине. Эта величина дублируется на ЦАП 4...20 мА, к которому подключается аналоговый регистратор.

Рисунок И.6 - ОВЕН ТРМ151-07

OBEH TPM151-08. Одновременное пошаговое регулирование температуры и влажности. Вычисление влажности производится психрометрическим методом по температуре «сухого» и «влажного» термометров.

Рисунок И.7 – ОВЕН ТРМ151-08

OBEH TPM151-09. Одноканальное пошаговое регулирование по измеренной или вычисленной величине. На второй выход прибора можно на определенном шаге программы подать периодические импульсы для включения дополнительного оборудования или сигнализации о ходе технологического процесса.

Рисунок И.8 - ОВЕН ТРМ151-09

ОВЕН ТРМ151-10. Одноканальное пошаговое регулирование с помощью системы «нагреватель – холодильник» по измеренной или вычисленной величине.

Рисунок И.9 – ОВЕН ТРМ151-10

Приложение К Юстировка датчика положения задвижки

К.1 Для канала с подключенным резистивным датчиком положения в программируемом параметре in-t устанавливается код. соответствующий подсоединенному датчику положения. например, Р.го.9.

К.2 Задвижка устанавливается в крайнее закрытое положение.

К.З Нажатием клавиш 🛛 + 🔤 осуществляется вход в процедуру юстировки датчика. При появлении на ЦИ1 мигающей надписи CALb подтверждается вход в процедуру юстировки нажатием клавиши

К.4 Вводится пароль "118" и нажимается кнопка [вод на передней панели прибора. Необходимо убедиться в появлении на цифровом индикаторе заставки

К.5 Для юстировки выбирается канал «C2». Нажатием клавиш 🖄 и 🖄 убедиться в появлении на ЦИЗ заставки «С2» (Выбор юстируемого канала).

К.6 Выбор канала подтверждается нажатием кнопки [1800], после чего следует убедиться в появлении на ЦИ4 заставки «О» (готовность прибора к юстировке крайнего закрытого положения задвижки).

К.7 Нажимается кнопка [1800] и наблюдается последовательное появление на индикаторе четырех прочерков на ЦИ2. По окончании юстировки на ЦИ2 отображается заставка и вычисленное прибором значение юстировочного коэффициента.

К.8 Для записи юстировочного коэффициента в память прибора нажимается кнопка [ввод]. После записи прибор предлагает пользователю продолжение калибровки.

К.9 Задвижка устанавливается в крайнее открытое положение.

К.10 Повторяются действия по п. К.4-К.6.

К.11 Кратковременно нажимается кнопка \land и пользователь должен убедиться в появлении на цифровом индикаторе заставки «99» (готовность прибора к юстировке крайнего открытого положения задвижки).

К.12 Повторяются действия по п. К.7. К.8.

К.13 Юстировка датчика положения задвижки для выбранного канала завершена. Показания измерения положения задвижки должны быть равны 100,0.

 ΓI

Π

ESPE 4 ٢2

№ изменения	Номера листов (стр.)				Всего	Пото	
	измен.	заменен.	новых	аннулир.	листов (стр.)	внесения	Подпись

Лист регистрации изменений

61153, г. Харьков, ул. Гвардейцев Широнинцев, ЗА Тел.: (057) 720-91-19 Факс: (057) 362-00-40 Сайт: owen.ua Отдел сбыта: sales@owen.ua Группа тех. поддержки: support@owen.ua

Per. № ukr_472