

FO210-8(16)R

Модуль дискретного виводу

Настанова щодо експлуатування АРАВ.426433.027-02 НЕ АРАВ.426433.027-03 НЕ

04.2025 версія 1.2

Зміст

По	Попереджувальні повідомлення2				
Ви	Використовувані абревіатури				
Bc	3ступ4				
1	Призначення				
2	Технічні характеристики та умови експлуатування			6	
	2.1	Технічні	характеристики	6	
	2.2	Ізоляція	вузлів пристрою	7	
	2.3	Умовиек	сплуатування	8	
3	3ax	оди безп	еки	9	
4	Мон	таж		10	
5	Піді	ключенн	я	11	
	5.1	Рекомен	дації щодо підключення	11	
	5.2	Признач	ення рознімачів та елементів керування	11	
	5.3	Признач	ення контактів клемника	13	
	5.4	Підключ	ення до виходів	14	
	5.5	Підключ	ення за інтерфейсом Ethernet	14	
6	Поб	удова і г	іринцип роботи	16	
	6.1	Принциг	роботи	16	
	6.2	Індикація	а та керування	16	
	6.3	Годинни	к реального часу	17	
	6.4	Запис ар	охіву	17	
	6.5	Режими	обміну даними	18	
		6.5.1	Робота за протоколом Modbus TCP	18	
		6.5.2	Коди помилок для протоколу Modbus	25	
		6.5.3 6.5.4	Робота за протоколом MQTT	27	
	66	0.0. 4 Режими		20	
	6.7	Безпеци	ий стан вихілних елементів	23	
7	0.7 Нап			30	
'	7 1	Пілипоч	ания по ПЗ «AOteck Tool Max»	30	
	7.2	Напашт			
	73	Напашту	ивання мережевих параметрів		
	7.4	Налашту	ивання параметрів обміну за протоколом SNMP		
	7.5	Пароль			
	7.6	Оновлен	ня вбулованого ПЗ		
	7.7	Напашту	изання голинника реального часу	34	
	7.8	Вілновпе	ання заволських напаштувань		
8	Tex	нічне об	слуговування		
·	8 1	Загальні	BKa3iBKN		
	8.2	Батарея			
9	Ком	плектніс	ть		
10	Mar	куванна			
11	Пак	vванна		38	
12	12 Транспортування та зберігання				
Дo	Додаток А. Розрахунок вектора ініціалізації для шифрування файлу архіву				

Попереджувальні повідомлення

У цій настанові застосовуються такі попередження:

НЕБЕЗПЕКА

Ключове слово НЕБЕЗПЕКА повідомляє про **безпосередню загрозу небезпечної ситуації**, яка призведе до смерті або серйозної травми, якщо їй не запобігти.

УВАГА

Ключове слово УВАГА повідомляє про **потенційно небезпечну ситуацію**, яка може призвести до незначних травм.

ПОПЕРЕДЖЕННЯ

Ключове слово ПОПЕРЕДЖЕННЯ повідомляє про **потенційно небезпечну ситуацію**, яка може призвести до пошкодження майна.

i

ПРИМІТКА

Ключове слово ПРИМІТКА звертає увагу на корисні поради та рекомендації, а також інформацію для ефективної та безперебійної роботи обладнання.

Обмеження відповідальності

За жодних обставин ТОВ «АКУТЕК» та його контрагенти не нестимуть юридичної відповідальності та не визнаватимуть за собою яких-небудь зобов'язань у зв'язку з будь-яким збитком, що виник внаслідок встановлення або використання пристрою з порушенням чинної нормативно-технічної документації.

Використовувані абревіатури

ДМЧ – доступна металева частина (доступна для дотику користувачем).

- ПЗ програмне забезпечення.
- ПК персональний комп'ютер.
- ПЛК програмований логічний контролер.
- СКЗ середнє квадратичне значення.
- ШІМ широтно-імпульсна модуляція.
- **RTC** годинник реального часу.
- **USB** послідовний інтерфейс для підключення периферійних пристроїв до обчислювальної техніки.
- **UTC** всесвітній координований час.

Вступ

Цю Настанову щодо експлуатування призначено для ознайомлення обслуговуючого персоналу з побудовою, принципом роботи, конструкцією, технічним експлуатуванням та обслуговуванням модуля дискретного виводу FO210-R (надалі за текстом – «пристрій» або «модуль»).

Підключення, налаштування і технічне обслуговування пристрою повинні виконувати тільки кваліфіковані фахівці після ознайомлення з цією Настановою щодо експлуатування.

Модуль має два виконання за кількістю реле:

FO210-8R – модуль з 8 дискретними виходами (реле), **FO210-16R** – модуль з 16 дискретними виходами (реле).

ТОВ «АКУТЕК» заявляє, що пристрій відповідає технічному регламенту з електромагнітної сумісності обладнання та технічному регламенту низьковольтного електричного обладнання. Повний текст декларації про відповідність доступний на сторінці пристрою на сайті aqteck.ua.

1 Призначення

Модуль призначено для керування виконавчими пристроями на об'єктах автоматизації. Керування модулем здійснюється за допомогою ПЛК, панельного контролера, ПК та іншого керівного пристрою.

Пристрій використовується поза сферою законодавчо регульованої метрології.

2 Технічні характеристики та умови експлуатування

2.1 Технічні характеристики

Таблиця 2.1 – Основні технічні характеристики

Найменування	Значення				
Живлення					
Напруга живлення	10…48 В пост. струму (номінальна 24 В)				
Споживана потужність, не більше	9 Вт				
Захист від переполюсування напруги живлення	E				
Інтер	фейси				
Інтерфейс обміну	Здвоєний Ethernet 10/100 Mbps				
Інтерфейс конфігурування	USB 2.0 (USB Type-C), Ethernet 10/100 Mbps				
Протоколи зв'язку, що використовуються для передавання інформації	Modbus TCP; MQTT; SNMP; NTP				
Версія протоколу ІР	IPv4				
Дискрет	ні виходи				
Кількість вихідних елементів	8 або 16 (залежно від виконання)				
Тип вихідних елементів	Електромагнітне реле				
Тип контакту	Нормально розімкнені контакти (1 Form A)				
Режими роботи	Перемикання логічного сигналу; генерація ШІМ сигналу				
Максимальна напруга на контакти реле	264 В (СКЗ) змінного струму; 30 В постійного струму				
Струм комутації	5 А (250 В змінного струму, 30 В постійного струму, резистивне навантаження)				
Мінімальний струм комутації	10 мА				
Категорія застосування за ДСТУ EN 60947-5-1	Елементи керування – АС-12, DC-13; контактори та пускачі – АС-1				
Механічний ресурс реле	5 000 000 циклів				
Електричний ресурс реле, не менше ніж	100 000 циклів (250VAC, 30VDC, 5А, резистивне навантаження)				
Час увімкнення	10 мс				
Час вимкнення	10 мс				
Параметри	ШІМ виходів				
Максимальна частота	1 Гц (за коефіцієнта заповнення 0,05)				
Мінімальна тривалість імпульсу ШІМ	50 мс				
Вбудована флеш-пам'ять (архів)					
Кількість циклів запису і стирання	До 100 000				
Максимальний розмір файлу архіву	2 кБ				
Максимальна кількість файлів архіву	1000				
Мінімальний період запису архіву	10 с (за умовчанням – 30 с)				

Найменування	Значення			
Загальні і	параметри			
Габаритні розміри	(57 × 121 × 111) ± 1 мм			
Ступінь захисту корпусу	IP20			
Середнє напрацювання на відмову*	60 000 год			
Середній термін служби	10 років			
Маса, не більше	0,5 кг			
Г • ПРИМІТКА				

LI |* Не враховуючи електромеханічні перемикачі та елемент живлення годинника реального часу.

2.2 Ізоляція вузлів пристрою

Схему гальванічно ізольованих вузлів і міцність гальванічної ізоляції наведено на рисунку 2.1.

Таблиця 2.2 – Типи ізоляції

Тип	Опис				
Основна (О)	Ізоляція для частин обладнання, що перебувають під напругою, з метою захи- сту від ураження електричним струмом. Електрична міцність основної ізоляції пристрою перевіряється типовими випробуваннями: застосуванням випробу- вальної змінної напруги, величина якої відрізняється для різних кіл пристрою.				
Додаткова (Д)	Незалежна ізоляція, на додаток до основної ізоляції для гарантії захисту від ураження електричним струмом у разі відмови основної ізоляції. Електрична міцність додаткової ізоляції пристрою перевіряється типовими випробуван- нями випробувальної змінної напруги різної величини (діюче значення).				
Посилена (П)	Окрема система ізоляції, що застосовується для частин під напругою, яка за- безпечує ступінь захисту від ураження електричним струмом, еквівалентний подвійній ізоляції згідно з ДСТУ EN 61131-2.				

2.3 Умови експлуатування

Пристрій призначений для експлуатування за таких умов:

- температура навколишнього повітря від мінус 40 до плюс 55 °С;
- відносна вологість повітря від 10 до 95% (за +35 °С без конденсації вологи);
- атмосферний тиск від 84 до 106,7 кПа;
- закриті вибухобезпечні приміщення без агресивних парів і газів.

Пристрій відповідає вимогам щодо стійкості до впливу електромагнітних завад відповідно до ДСТУ EN 61131-2 і ДСТУ EN 61000-6-2.

За рівнем випромінювання радіозавад (завадоемісії) пристрій відповідає нормам, встановленим ДСТУ EN 61131-2 і ДСТУ EN 61000-6-4.

За стійкістю до механічних впливів під час експлуатування пристрій відповідає ДСТУ ІЕС 60068-2-6 і ДСТУ ІЕС 60068-2-27.

За стійкістю до кліматичних впливів під час експлуатування пристрій відповідає ДСТУ ІЕС 60068-2-1, ДСТУ ІЕС 60068-2-2 і ДСТУ ІЕС 60068-2-78.

3 Заходи безпеки

За способом захисту від ураження електричним струмом модуль відповідає класу ІІ за ДСТУ EN 61140.

Під час експлуатування та технічного обслуговування необхідно дотримуватися вимог Правил технічної експлуатації електроустановок споживачів і Правил улаштування електроустановок.

Пристрій слід встановлювати у спеціалізованих шафах, доступ до яких дозволений тільки кваліфікованим фахівцям. Будь-які підключення до пристрою і роботи з його технічного обслуговування слід проводити тільки при вимкненому живленні пристрою і підключених до нього пристроїв.

Не допускається потрапляння вологи на контакти вихідного рознімача і внутрішні електроелементи пристрою.

УВАГА

Заборонено використовувати пристрій за наявності в атмосфері кислот, лугів, мастил та інших агресивних речовин.

/[

4 Монтаж

Пристрій встановлюється в шафі електрообладнання.

Конструкція шафи повинна забезпечувати захист пристрою від потрапляння вологи, бруду та сторонніх предметів

Для установлення пристрою необхідно:

- 1. Переконатися в наявності вільного простору для підключення пристрою та прокладення проводів.
- 2. Закріпити пристрій на DIN-рейці.

 УВАГА
 Під час монтажу необхідно забезпечити наявність вільного простору 50 мм над пристроєм та під ним.

Рисунок 4.1 – Приклад правильного встановлення

Рисунок 4.2 – Приклади помилкового встановлення

Рисунок 4.3 – Габаритний кресленик

5 Підключення

5.1 Рекомендації щодо підключення

Монтаж зовнішніх підключень здійснюється проводом перетином не більше 2,5 мм² (детальна інформація розміщена на корпусі пристрою).

Для багатожильних проводів треба використовувати наконечники.

Монтаж дротів живлення необхідно виконувати за допомогою відповідного клемника з комплекту постачання.

ПОПЕРЕДЖЕННЯ

Підключення і технічне обслуговування виконувати тільки при відключеному живленні модуля і підключених до нього пристроїв.

) ПОПЕРЕДЖЕННЯ

Забороняється підключати дроти різного перетину до однієї клеми.

Загальні вимоги до ліній з'єднань:

- під час прокладання кабелів слід виділити лінії зв'язку, що з'єднують пристрій з датчиком, у самостійну трасу (або кілька трас), розташовуючи її (або їх) окремо від силових кабелів, а також від кабелів, що створюють високочастотні й імпульсні завади;
- для захисту входів пристрою від впливу промислових електромагнітних завад лінії зв'язку пристрою з датчиком необхідно екранувати. У якості екранів можуть бути використані як спеціальні кабелі з екрануючим обплетенням, так і заземлені сталеві труби відповідного діаметру. Екрани кабелів з екрануючим обплетенням слід підключити до контакту функціонального заземлення (FE) у щиті керування;
- фільтри мережевих завад потрібно встановлювати у лініях живлення пристрою;
- іскрогасильні фільтри потрібно встановлювати у лініях комутації силового обладнання.

Монтуючи систему, в якій працює пристрій, слід враховувати правила організації ефективного заземлення:

- усі заземлювальні лінії слід прокладати за схемою «зірка» із забезпеченням хорошого контакту із заземлюваним елементом;
- усі заземлювальні кола мають бути виконані проводами найбільшого перетину;

5.2 Призначення рознімачів та елементів керування

На лицьовій панелі пристрою розташовані (див. рисунок 5.1):

- два рознімачі Ethernet (тип RJ45);
- USB (Type-C);
- рознімач для підключення живлення пристрою;
- рознімачі для підключення до вихідних елементів;
- елементи індикації світлодіоди;
- сервісна кнопка.

Рисунок 5.1 – Рознімачі та елементи керування пристрою

5.3 Призначення контактів клемника

Рисунок 5.2 – Призначення контактів клемника

таолиця 5.1 – призначення контактів клемника пристрою	Таблиця 5.1	1 – Призначення	контактів	клемника	пристрою
---	-------------	-----------------	-----------	----------	----------

Найменуван	ня контакту	Призначення		
Живлення пристрою	24 VDC	Підключення напруги живлення пристрою		
	0 VDC			
Реле з NO контактами	DOxA	Підключення до нормально розімкнутого контакту		
	DOxB			

УВАГА

Допускається застосовувати джерело живлення зі струмом навантаження не більше 8 А.

УВАГА

Довжина кабелю живлення не повинна перевищувати 30 м.

УВАГА

Використання джерел живлення без потенційної розв'язки або з базовою (основною) ізоляцією ліній низької напруги від ліній змінного струму, може призвести до появи небезпечної напруги у лініях пристрою.

5.4 Підключення до виходів

На рисунку 5.3 представлено схему підключення зовнішніх пристроїв до дискретних виходів.

Рисунок 5.3 – Схема підключення зовнішніх пристроїв до дискретних виходів

УВАГА

У разі підключення індуктивного навантаження слід встановити RC-ланцюг паралельно навантаженню. У момент комутації індуктивного навантаження в лінії RC-ланцюг знижує рівень перенапруги.

5.5 Підключення за інтерфейсом Ethernet

Для підключення модулів до мережі Ethernet можна використовувати такі схеми:

- «Зірка» (див. рисунок 5.4);
- «Ланцюжок / «Daisy-chain» (див. рисунок 5.5).

Рисунок 5.4 – Підключення за схемою «Зірка»

ПОПЕРЕДЖЕННЯ

Максимальна довжина ліній зв'язку Ethernet – 100 м. Підключення можливе до будь-якого порту Ethernet модуля. Незадіяний Ethernet-порт слід закрити заглушкою з комплекту постачання.

Для підключення за схемою «Ланцюжок» треба використовувати обидва Ethernet-порти модуля. Якщо модуль вийшов з ладу або відключилося живлення, то дані будуть передаватися з порту 1 на порт 2 без розриву зв'язку.

Рисунок 5.5 – Підключення за схемою «Ланцюжок»

ПОПЕРЕДЖЕННЯ

Максимальна довжина лінії зв'язку між двома сусідніми активними пристроями, підключених за схемою «Ланцюжок», – 100 м.

Допускається змішана схема підключення.

Незадіяний Ethernet-порт слід закрити заглушкою з комплекту постачання.

6 Побудова і принцип роботи

6.1 Принцип роботи

Модуль отримує команди на керування вихідними елементами від Майстра мережі.

Майстром мережі може бути:

- ПК;
- ПЛК;
- панель оператора;
- віддалений хмарний сервіс.

Якщо перевищено тайм-аут обміну з Майстром мережі, то вихідні елементи переходять у безпечний стан – режим генерування сигналу ШІМ, згідно зі значенням у регістрі «Безпечний стан виходу DOx» (0 за умовчуванням).

Вихід з безпечного стану відбувається по отриманню наступних команд від Майстра мережі:

- встановлення значення бітової маски (для виходів в режимі «Логічний рівень»);
- встановлення періоду або коефіцієнту заповнення (для виходів в режимі «ШІМ»).

Тайм-аут обміну налаштовується за допомогою конфігуратора AQteck Tool Max.

6.2 Індикація та керування

Призначення індикаторів наведено в таблиці 6.1.

Таблиця 6.1 – Призначення індикаторії

Індикатор		Стан індикатора	Призначення		
Живлення 🔱 (зелений)		Увімкнено	Напругу живлення пристрою подано		
Аварія 🖄 (чер	воний)*	Не світиться	Збої відсутні		
		Світиться постійно	Збій основного додатка та/ або конфігурації		
		Вмикається один раз на дві секунди (вмикається на 100 мс)	Необхідна заміна батареї живлення годинника (напруга батареї нижче 2 В)		
		Вмикається двічі на секунду (вмикається на 100 мс через паузу 400 мс)	Модуль перебуває в безпечному стані		
		Вмикається на 900 мс через паузу 100 мс	Апаратний збій периферії (Flash, RTC, Ethernet Switch)		
Індикатори стану вихідних елементів		Світиться (зелений)	Замкнений стан виходу		
		Світиться (жовтий)	Замкнений стан виходу (безпечний режим)		
		Не світиться	Розімкнутий стан виходу		
Індикатори	Стан підключення	Світиться	Наявність зв'язку		
Ethernet	(Link) (зелений)	Блимає	Обмін даними		
		Не світиться	Зв'язок відсутній		
	Швидкість обміну	Світиться	Швидкість 100 Mbps		
	(жовтий)	Не світиться	Швидкість 10 Mbps		

* Пріоритети індикації світлодіода «Аварія» від більшого до меншого: апаратний збій, програмні помилки, безпечний режим, рівень заряду батареї.

Сервісна кнопка 🎇 призначена для виконання таких функцій:

- відновлення заводських налаштувань (розділ 7.8);
- встановлення IP-адреси (розділ 7.4);
- оновлення вбудованого програмного забезпечення (розділ 7.6).

6.3 Годинник реального часу

Пристрій має вбудований годинник реального часу (RTC). Годинник реального часу працює від власного батарейного джерела живлення.

Відлік часу проводиться за UTC у секундах, починаючи з 00:00 01 січня 2000 року. Значення RTC використовується для запису в архів.

Докладніше про налаштування годинника реального часу див. розділ 7.7.

6.4 Запис архіву

У модуль вбудовано флеш-пам'ять, що розмічена під файлову систему з шифруванням файлів. Алгоритм шифрування – Data Encryption Standard (DES) у режимі зчеплення блоків шифротексту (CBC). Як ключ використовується рядок **superkey**. Вектор ініціалізації генерується за допомогою хеш-функції (див. Додаток А). Аргументом функції є пароль, заданий у ПЗ **AQteck Tool Max**. Наприкінці файлу зберігається контрольна сума, розрахована за алгоритмом CRC32 (контрольна сума також шифрується).

Архів модуля зберігається у вигляді набору файлів. Період архівації, обмеження на розмір одного файлу та їхню кількість задає користувач у ПЗ **AQteck Tool Max**. Якщо архів повністю заповнений, то дані перезаписуються, починаючи з найстаріших даних найстарішого файлу.

Файл архіву складається з набору записів. Записи розділені символами перенесення рядка (0x0A0D). Кожен запис відповідає одному параметру і складається з полів, розділених символом «;» (без лапок). Формат запису наведено в таблиці нижче.

Параметр	Тип	Розмір	Коментар
Мітка часу	Бінарні дані	4 байти	У секундах починаючи з 00:00 01.01.2000 (UTC+0)
Роздільник	Рядок	1 байт	Символ «;» (без лапок)
Унікальний ідентифікатор параметра (UID)	Рядок	8 байт	У вигляді рядка з НЕХ-символів із провідними нулями
Роздільник	Рядок	1 байт	Символ «;» (без лапок)
Значення параметра	Рядок	Залежить від параметра	У вигляді рядка з НЕХ-символів із провідними нулями
Роздільник	Рядок	1 байт	Символ «;» (без лапок)
Статус параметра	Бінарні дані	1 байт	 1 – значення параметра коректне, 0 – значення параметра некоректне і його подальша обробка не рекомендована
Перенесення рядка	Бінарні дані	2 байти	\n\r (0x0A0D)

Таблиця 6.2 – Формат запису у файлі архіву

Приклад

Розшифрований запис:

де

0x52 0x82 0xD1 0x24 — мітка часу. Для одержання дати і часу у форматі UnixTime треба змінити порядок байт на протилежний і додати константу-зміщення (число секунд між 00:00:00 01.01.1970 і 00:00:00 01.01.2000): 0x24D18252 (HEX) + 946684800 (DEC) = 1564394971 (DEC, відповідає 29 липня 2019 р., 10:09:31);

0х3В — розділювач;

0x30 0x30 0x30 0x30 0x61 0x39 0x30 0x30 — унікальний ідентифікатор параметра (00003ba00);

0x30 0x30 0x30 0x30 0x30 0x30 0x30 0x31 — значення параметра (00000001);

0x31 — статус параметра (1 – значення параметра коректне);

0x0A 0x0D — символи перенесення рядка.

Пристрій фіксує час в архівних файлах за вбудованим годинником реального часу (з урахуванням часового поясу). Запис у флеш-пам'ять відбувається з вказаною користувачем частотою (за умовчанням – 30 с).

Для читання архіву можна використовувати:

- ПЗ AQteck Tool Max (наприклад, для ручного аналізу);
- інше ПЗ користувача (за допомогою 20-ї функції Modbus).

Список архівованих параметрів доступний в **AQteck Tool Max** на вкладці **Інформація про пристрій**. Порядок запису параметрів в архів відповідає порядку параметрів на вкладці.

ПРИМІТКА

Після оновлення вбудованого ПЗ всі налаштування пристрою, крім мережевих, будуть скинуті до заводських.

Архів зчитується за допомогою 20-ї функції Modbus (0x14). Ця функція повертає вміст регістрів файлу пам'яті та дає змогу за допомогою одного запиту прочитати один або кілька записів з одного або декількох файлів.

У запиті читання файлу для кожного запису вказується:

- тип посилання 1 байт (має дорівнювати 6);
- номер файлу 2 байти;
- початкова адреса регістра всередині файлу 2 байти;
- кількість регістрів для читання 2 байти.

i

ПРИМІТКА

Номер файлу в запиті по Modbus розраховується як 4096 + порядковий номер файлу. Порядкова нумерація файлів ведеться з нуля. Параметр «Останній індекс архіву» містить порядковий номер файлу архіву, в який востаннє записувалися дані.

Кількість регістрів, що зчитуються в запиті, має бути підібрана таким чином, щоб довжина відповіді не перевищувала допустиму довжину пакета Modbus (256 байт).

Розмір файлу архіву заздалегідь невідомий, тому слід зчитувати порції даних за допомогою окремих запитів. Якщо у відповідь на запит буде отримано повідомлення з кодом помилки 0x04 (MODBUS_SLAVE_DEVICE_FAILURE), то можна зробити висновок, що адреси регістрів у запиті перебувають за межами файлу. Щоб зчитати останні дані файлу, потрібно зменшити кількість регістрів у запиті.

ПРИМІТКА

Якщо вимкнути живлення під час запису даних в архів, запис може не зберегтися.

6.5 Режими обміну даними

Модуль підтримує такі режими обміну даними:

- обмін із Майстром мережі за протоколом Modbus TCP (порт 502) до 4 одночасних з'єднань із різними Майстрами мережі;
- обмін з віддаленим хмарним сервісом (необхідний доступ до Інтернету);
- обмін за протоколом MQTT;
- обмін за протоколом SNMP.

6.5.1 Робота за протоколом Modbus TCP

Таблиця 6.3 – Читання та запис параметрів за протоколом Modbus TCP

Операція	Функція
Читання	3 (0х03) або 4 (0х04)
Запис	6 (0x06) або 16 (0x10)

Список perictpiв Modbus зчитується з пристрою за допомогою ПЗ **AQteck Tool Max** у вкладці **Параметри пристрою**. А також список perictpiв Modbus представлений у таблицях нижче.

Назва	Регістр	Розмір/тип/опис
Назва (ім'я) пристрою для показу користувачеві (DEV)	0xF000	Символьний рядок до 32 байт, кодування Win1251
Версія вбудованого ПЗ пристрою для показу користувачеві (VER)	0xF010	Символьний рядок до 32 байт, кодування Win1251
Назва платформи	0xF020	Символьний рядок до 32 байт, Win1251
Версія платформи	0xF030	Символьний рядок до 32 байт, Win1251
Версія апаратного забезпечення	0xF040	Символьний рядок до 16 байт, Win1251
Додаткова символьна інформація	0xF048	Символьний рядок до 16 байт, Win1251
Час і дата	0xF080	4 байти, у секундах з 2000 р.
Часовий пояс	0xF082	2 байти, signed short, зміщення в хвилинах від Гринвіча
Заводський номер пристрою	0xF084	Символьний рядок 32 байти, кодування Win1251, використовується 17 символів

Таблиця 6.4 – Загальні регістри оперативного обміну за протоколом Modbus

Таблиця 6.5 – Регістри налаштування та керування ВЕ за протоколом Modbus

Deneurore		Адреса регістра		Тип	Формат	
Параметр	значення (од. вим.)	DEC	HEX	доступу	даних	
Режим роботи виходу DO1	0 — перемикання логічного сигналу; 1 — ШІМ	272	0x110	Читання і запис	UINT 16	
Режим роботи виходу DO2	0 — перемикання логічного сигналу; 1 — ШІМ	273	0x111	Читання і запис	UINT 16	
Режим роботи виходу DO3	0 — перемикання логічного сигналу; 1 — ШІМ	274	0x112	Читання і запис	UINT 16	
Режим роботи виходу DO4	0 – перемикання логічного сигналу; 1 – ШІМ	275	0x113	Читання і запис	UINT 16	
Режим роботи виходу DO5	0 — перемикання логічного сигналу; 1 — ШІМ	276	0x114	Читання і запис	UINT 16	
Режим роботи виходу DO6	0 — перемикання логічного сигналу; 1 — ШІМ	277	0x115	Читання і запис	UINT 16	
Режим роботи виходу DO7	0 — перемикання логічного сигналу; 1 —ШІМ	278	0x116	Читання і запис	UINT 16	
Режим роботи виходу DO8	0 — перемикання логічного сигналу; 1 — ШІМ	279	0x117	Читання і запис	UINT 16	
Режим роботи виходу DO9	0 — перемикання логічного сигналу; 1 — ШІМ	280	0x118	Читання і запис	UINT 16	
Режим роботи виходу DO10	0 — перемикання логічного сигналу; 1 — ШІМ	281	0x119	Читання і запис	UINT 16	
Режим роботи виходу DO11	0 — перемикання логічного сигналу; 1 — ШІМ	282	0x11A	Читання і запис	UINT 16	

Параметр Значення (од. вим.)		Адреса регістра		Тип	Формат
параметр	значення (од. вим.)	DEC	HEX	доступу	даних
Режим роботи виходу DO12	0 — перемикання логічного сигналу; 1 — ШІМ	283	0x11B	Читання і запис	UINT 16
Режим роботи виходу DO13	0 — перемикання логічного сигналу; 1 — ШІМ	284	0x11C	Читання і запис	UINT 16
Режим роботи виходу DO14	0 — перемикання логічного сигналу; 1 — ШІМ	285	0x11D	Читання і запис	UINT 16
Режим роботи виходу DO15	Режим роботи виходу DO15 0 – перемикання логічного сигналу; 1 – ШІМ		0x11E	Читання і запис	UINT 16
Режим роботи виходу DO16	0 — перемикання логічного сигналу; 1 — ШІМ	287	0x11F	Читання і запис	UINT 16
Період ШІМ виходу DO1	100060000 (мілісекунд)	308	0x134	Читання і запис	UINT 16
Період ШІМ виходу DO2	100060000 (мілісекунд)	309	0x135	Читання і запис	UINT 16
Період ШІМ виходу DO3	100060000 (мілісекунд)	310	0x136	Читання і запис	UINT 16
Період ШІМ виходу DO4	100060000 (мілісекунд)	311	0x137	Читання і запис	UINT 16
Період ШІМ виходу DO5	100060000 (мілісекунд)	312	0x138	Читання і запис	UINT 16
Період ШІМ виходу DO6	100060000 (мілісекунд)	313	0x139	Читання і запис	UINT 16
Період ШІМ виходу DO7	100060000 (мілісекунд)	314	0x13A	Читання і запис	UINT 16
Період ШІМ виходу DO8	100060000 (мілісекунд)	315	0x13B	Читання і запис	UINT 16
Період ШІМ виходу DO9	100060000 (мілісекунд)	316	0x13C	Читання і запис	UINT 16
Період ШІМ виходу DO10	100060000 (мілісекунд)	317	0x13D	Читання і запис	UINT 16
Період ШІМ виходу DO11	100060000 (мілісекунд)	318	0x13E	Читання і запис	UINT 16
Період ШІМ виходу DO12	100060000 (мілісекунд)	319	0x13F	Читання і запис	UINT 16
Період ШІМ виходу DO13	100060000 (мілісекунд)	320	0x140	Читання і запис	UINT 16
Період ШІМ виходу DO14	100060000 (мілісекунд)	321	0x141	Читання і запис	UINT 16
Період ШІМ виходу DO15	100060000 (мілісекунд)	322	0x142	Читання і запис	UINT 16
Період ШІМ виходу DO16	100060000 (мілісекунд)	323	0x143	Читання і запис	UINT 16
Коефіцієнт заповнення ШІМ виходу DO1	01000 (0,10%)	340	0x154	Читання і запис	UINT 16

		Адреса регістра		Тип	Формат
параметр	значення (од. вим.)	DEC	HEX	доступу	даних
Коефіцієнт заповнення ШІМ виходу DO2	01000 (0,10%)	341	0x155	Читання і запис	UINT 16
Коефіцієнт заповнення ШІМ виходу DO3	01000 (0,10%)	342	0x156	Читання і запис	UINT 16
Коефіцієнт заповнення ШІМ виходу DO4	01000 (0,10%)	343	0x157	Читання і запис	UINT 16
Коефіцієнт заповнення ШІМ виходу DO5	01000 (0,10%)	344	0x158	Читання і запис	UINT 16
Коефіцієнт заповнення ШІМ виходу DO6	01000 (0,10%)	345	0x159	Читання і запис	UINT 16
Коефіцієнт заповнення ШІМ виходу DO7	01000 (0,10%)	346	0x15A	Читання і запис	UINT 16
Коефіцієнт заповнення ШІМ виходу DO8	01000 (0,10%)	347	0x15B	Читання і запис	UINT 16
Коефіцієнт заповнення ШІМ виходу DO9	01000 (0,10%)	348	0x15C	Читання і запис	UINT 16
Коефіцієнт заповнення ШІМ виходу DO10	01000 (0,10%)	349	0x15D	Читання і запис	UINT 16
Коефіцієнт заповнення ШІМ виходу DO11	01000 (0,10%)	350	0x15E	Читання і запис	UINT 16
Коефіцієнт заповнення ШІМ виходу DO12	01000 (0,10%)	351	0x15F	Читання і запис	UINT 16
Коефіцієнт заповнення ШІМ виходу DO13	01000 (0,10%)	352	0x160	Читання і запис	UINT 16
Коефіцієнт заповнення ШІМ виходу DO14	01000 (0,10%)	353	0x161	Читання і запис	UINT 16
Коефіцієнт заповнення ШІМ виходу DO15	01000 (0,10%)	354	0x162	Читання і запис	UINT 16
Коефіцієнт заповнення ШІМ виходу DO16	01000 (0,10%)	355	0x163	Читання і запис	UINT 16
Бітова маска стану виходів DO1–DO16	065535	468	0x1D4	Тільки читання	UINT 32
Бітова маска встановлення стану виходів DO1–DO16	065535	470	0x1D6	Читання і запис	UINT 16
Безпечний стан виходу DO1	01000 (0,10 %)	474	0x1DA	Читання і запис	UINT 16
Безпечний стан виходу DO2	01000 (0,10 %)	475	0x1DB	Читання і запис	UINT 16
Безпечний стан виходу DO3	01000 (0,10 %)	476	0x1DC	Читання і запис	UINT 16
Безпечний стан виходу DO4	01000 (0,10 %)	477	0x1DD	Читання і запис	UINT 16
Безпечний стан виходу DO5	01000 (0,10 %)	478	0x1DE	Читання і запис	UINT 16
Безпечний стан виходу DO6	01000 (0,10 %)	479	0x1DF	Читання і запис	UINT 16
Безпечний стан виходу DO7	01000 (0,10 %)	480	0x1E0	Читання і запис	UINT 16

Попомотр		Адреса регістра		Тип	Формат
Параметр	значення (од. вим.)	DEC	HEX	доступу	даних
Безпечний стан виходу DO8	01000 (0,10 %)	481	0x1E1	Читання і запис	UINT 16
Безпечний стан виходу DO9	01000 (0,10 %)	482	0x1E2	Читання і запис	UINT 16
Безпечний стан виходу DO10	01000 (0,10 %)	483	0x1E3	Читання і запис	UINT 16
Безпечний стан виходу DO11	01000 (0,10 %)	484	0x1E4	Читання і запис	UINT 16
Безпечний стан виходу DO12	01000 (0,10 %)	485	0x1E5	Читання і запис	UINT 16
Безпечний стан виходу DO13	01000 (0,10 %)	486	0x1E6	Читання і запис	UINT 16
Безпечний стан виходу DO14	01000 (0,10 %)	487	0x1E7	Читання і запис	UINT 16
Безпечний стан виходу DO15	01000 (0,10 %)	488	0x1E8	Читання і запис	UINT 16
Безпечний стан виходу DO16	01000 (0,10 %)	489	0x1E9	Читання і запис	UINT 16
Тайм-аут переходу в безпечний стан	060 (секунд)	700	0x2BC	Читання і запис	UINT 8

Таблиця 6.6 – Регістри загальних налаштувань пристрою за протоколом Modbus

Парацотр		Адреса регістра		Тип	Формат
Параметр	эначення (од. вим.)	DEC	HEX	доступу	даних
Дозвіл конфігурування з віддаленого хмарного сервісу	0 – заблоковано; 1 – дозволено	701	0x2BD	Читання і запис	UINT 16
Керування та запис значень з віддаленого хмарного сервісу	0 – заблоковано; 1 – дозволено	702	0x2BE	Читання і запис	UINT 16
Доступ до регістрів Modbus з віддаленого хмарного сервісу	0— повна заборона; 1— тільки читання; 2— тільки запис; 3— повний доступ	703	0x2BF	Читання і запис	UINT 16
Стан батареї (напруга)	03300 (мВ)	801	0x321	Тільки читання	UINT 16
Період архівування	103600 (секунд); заводське налаштування – 30 (секунд)	900	0x384	Читання і запис	UINT 16
Час у мілісекундах	_	61563	0xF07B	Тільки читання	UINT 32
Новий час	Дата/Час у секундах із 1 січня 2000 р.		0xF07D	Читання і запис	UINT 32
Записати новий час	0 – не записувати; 1 – записати	61567	0xF07F	Читання і запис	UINT 16
Часовий пояс	Зміщення у хвилинах від Гринвіча	61570	0xF082	Читання і запис	INT 16

Порацотр	Значения (од рим.) Аг	Адреса	Адреса регістра		Формат
Параметр	Эпачення (од. вим.)	DEC	HEX	доступу	даних
МАС адреса	_	61696	0xF100	Тільки читання	UINT 48
DNS сервер 1	_	12	0x0C	Читання і запис	UINT 32
DNS сервер 2	_	14	0x0E	Читання і запис	UINT 32
Встановити IP-адресу	-	20	0x14	Читання і запис	UINT 32
Встановити маску підмережі	_	22	0x16	Читання і запис	UINT 32
Встановити IP-адресу шлюзу	_	24	0x18	Читання і запис	UINT 32
Поточна IP-адреса	_	26	0x1A	Тільки читання	UINT 32
Поточна маска підмережі	_	28	0x1C	Тільки читання	UINT 32
Поточна IP-адреса шлюзу	_	30	0x1E	Тільки читання	UINT 32
Режим DHCP	0– вимкнено; 1– увімкнено; 2– разове налаштування кнопкою	32	0x20	Читання і запис	UINT 16
Підключення до Cloud	0 – вимкнути; 1 – увімкнути	35	0x23	Читання і запис	UINT 16
Статус підключення до Cloud	0— немає зв'язку; 1— з'єднання; 2— робота; 3— помилка; 4— відсутній пароль	36	0x24	Читання і запис	UINT 16

Таблиця 6.7 – Регістри мережевих налаштувань пристрою за протоколом Modbus

Таблиця 6.8 – Регістри налаштувань NTP за протоколом Modbus

		Адреса регістра		Тип	Формат
Параметр	эначення (од. вим.)	DEC	HEX	доступу	даних
Увімкнення/вимкнення NTP	0 — вимкнути; 1 — увімкнути	5632	0x1600	Читання і запис	UINT 16
Пул NTP серверів	_	5633	0x1601	Читання і запис	STRING 256
NTP сервер 1	_	5697	0x1641	Читання і запис	UINT 32
NTP сервер 2	_	5699	0x6143	Читання і запис	UINT 32
Період синхронізації NTP	565535 c	5701	0x1645	Читання і запис	UINT 16
Статус NTP	0 — вимкнено; 1 — синхронізація; 2 — синхронізовано	5702	0x1646	Читання і запис	UINT 16

Demosion	2	Адреса	Адреса регістра		Формат
Параметр	значення (од. вим.)	DEC	HEX	доступу	даних
Підключення до брокера MQTT	0 — вимкнути; 1 — увімкнути	5888	0x1700	Тільки читання	UINT 16
Логін MQTT	-	5928	0x1728	Читання і запис	STRING 256
Пароль MQTT	-	5960	0x1748	Читання і запис	STRING 256
Ім'я пристрою MQTT	-	5896	0x1708	Читання і запис	STRING 256
Адреса брокера MQTT	-	5993	0x1769	Читання і запис	STRING 256
Порт МQTT	065535	5891	0x1703	Читання і запис	UINT 16
Зберігання останнього повідомлення MQTT	0 – вимкнути; 1 – увімкнути	5895	0x1707	Читання і запис	UINT 16
Інтервал публікації MQTT	5600 c	5892	0x1704	Читання і запис	UINT 16
Якість обслуговування MQTT	0 – QoS0; 1 – QoS1; 2 – QoS2	5893	0x1705	Читання і запис	UINT 16
Інтервал Кеер Alive MQTT	0600 c	5992	0x1768	Читання і запис	UINT 16
Статус МQTT	0 — відключено; 1 — підключено; 2 — помилка з'єднання	6025	0x1789	Тільки читання	UINT 16
Увімкнути (MQTTstatus)	0 – вимкнути; 1 – увімкнути	6026	0x178A	Читання і запис	UINT 16

Таблиця 6.9 – Ре	егістри налашт	увань МОТТ за	протоколом Modbus
		Journe main ou	

Таблиця 6.10 – Регістри налаштувань SNMP за протоколом Modbus

D anassan		Адреса	регістра	Тип	Формат
Параметр	эначення (од. вим.)	DEC	HEX	доступу	даних
Увімкнення/вимкнення SNMP	0 – вимкнути; 1 – увімкнути	5120	0x1400	Читання і запис	UINT 16
Спільнота для читання SNMP	_	6001	0x1771	Читання і запис	STRING 256
Спільнота для запису SNMP	_	6017	0x1781	Читання і запис	STRING 256
IP адреса для пастки SNMP	_	5121	0x1401	Читання і запис	UINT 32
Номер порту для пастки	065535	5123	0x1403	Читання і запис	UINT 16
Версія SNMP	0 – SNMPv1; 1 – SNMPv2	5124	0x1404	Читання і запис	UINT 16
Керування та запис значень з віддаленого хмарного сервісу	0 – заблоковано; 1 – дозволено				

6.5.2 Коди помилок для протоколу Modbus

Під час роботи модуля за протоколом Modbus можливе виникнення помилок, наведених у таблиці 6.11. У разі виникнення помилки модуль надсилає Майстру мережі відповідь із кодом помилки.

Назва помилки	Код, що повертається	Опис помилки
MODBUS_ILLEGAL_FUNCTION	01 (0x01)	Неприпустимий код функції — помилка ви- никає, якщо модуль не підтримує функцію Modbus, зазначену в запиті
MODBUS_ILLEGAL_DATA_ADDRESS	02 (0x02)	Неприпустима адреса регістра – помилка виникає, якщо в запиті вказані адреси ре- гістрів, відсутні в модулі
MODBUS_ILLEGAL_DATA_VALUE	03 (0x03)	Неприпустиме значення даних – помилка виникає, якщо запит містить неприпустиме значення для запису до регістра
MODBUS_SLAVE_DEVICE_FAILURE	04 (0x04)	Помилка виникає, якщо запитана дія не може бути завершена

Таблиця 6.11 – Список можливих помилок

Під час обміну за протоколом Modbus модуль перевіряє відповідність запитів специфікації Modbus. Запити, що не пройшли перевірку, ігноруються модулем. Запити, в яких вказано адресу, що не відповідає адресі модуля, також ігноруються.

Далі перевіряється код функції. Якщо в модуль надходить запит із кодом функції, не зазначеної в таблиці 6.12, виникає помилка MODBUS_ILLEGAL_FUNCTION.

Таблиця 6.12 -	Список підтрим	уваних функцій
----------------	----------------	----------------

Назва функції	Код функції	Опис функції
MODBUS_READ_HOLDING_REGISTERS	3 (0x03)	Читання значень з одного або декількох регістрів зберігання
MODBUS_READ_INPUT_REGISTERS	4 (0x04)	Читання значень з одного або декількох регістрів введення
MODBUS_WRITE_SINGLE_REGISTER	6 (0x06)	Запис значення в один регістр
MODBUS_WRITE_MULTIPLE_REGISTERS	16 (0x10)	Запис значень у кілька регістрів
MODBUS_READ_FILE_RECORD	20 (0x14)	Читання архіву з файлу
MODBUS_WRITE_FILE_RECORD	21 (0x15)	Запис архіву у файл

Ситуації, що призводять до виникнення помилок під час роботи з регістрами, описано в таблиці 6.13.

Таблиця 6.13 – Помилки під час роботи з регістрами

Використовувана функція	Найменування помилки	Можливі ситуації, що призводять до помилки
MODBUS_READ_HOLDING_ REGISTERS	MODBUS_ILLEGAL_DATA_ ADDRESS	 кількість запитуваних регістрів більша за максимальне можливе число (125); запит неіснуючого параметра
MODBUS_READ_INPUT_ REGISTER	MODBUS_ILLEGAL_DATA_ ADDRESS	 кількість запитуваних регістрів більша за максимальне можливе число (125); запит неіснуючого параметра
MODBUS_WRITE_SINGLE_ REGISTER	MODBUS_ILLEGAL_DATA_ ADDRESS	 спроба запису параметра, розмір якого перевищує 2 байти; спроба запису параметра, доступ на запис до якого заборонено; спроба запису параметра такого типу, запис у який не може бути здійснено цією функцією.

Використовувана функція	Найменування помилки	Можливі ситуації, що призводять до помилки
		 Підтримувані типи: знакові та беззнакові цілі (розмір не більше 2 байт), що перераховуються; float16 (на даний момент у модулі такий тип не використовується). запит неіснуючого параметра
	MODBUS_ILLEGAL_DATA_ VALUE	 вихід за межі максимального або мінімального обмежень для параметра
MODBUS_WRITE_MULTIPLE_ REGISTERS	MODBUS_ILLEGAL_DATA_ ADDRESS	 запис неіснуючого параметра; спроба запису параметра, доступ на запис до якого заборонено; кількість записуваних регістрів більша за максимальне можливе число (123)
	MODBUS_ILLEGAL_DATA_ VALUE	 не знайдено символ закінчення рядка (`\0`) у рядковому параметрі; розмір запитуваних даних менший за розмір першого або останнього параметра в запиті; вихід за межі максимального або мінімального обмежень для параметра

Ситуації, що призводять до виникнення помилок під час роботи з архівом, описано в таблиці 6.14.

Таблиця 6.14 – Помилки під час роботи з архівом

Використовувана функція	Найменування помилки	Можливі ситуації, що призводять до помилки
MODBUS_READ_FILE_ RECORD	MODBUS_ILLEGAL_ FUNCTION	 помилковий розмір даних (0x07 <= data length <= 0xF5)
	MODBUS_ILLEGAL_DATA_ ADDRESS	 reference type не відповідає специфікації; не вдалося відкрити файл для читання (можливо, він відсутній)
	MODBUS_ILLEGAL_DATA_ VALUE	 не вдалося переміститися до потрібного зміщення у файлі
	MODBUS_SLAVE_DEVICE_ FAILURE	 помилка видалення файлу під час запиту на видалення; запит занадто великої кількості даних (понад 250 байт); неприпустимий номер запису (більше 0x270F); неприпустимий record length (більше 0x7A)
MODBUS_WRITE_FILE_ RECORD	MODBUS_ILLEGAL_ FUNCTION	 помилковий розмір даних (0x09 <= data length <= 0xFB)
	MODBUS_ILLEGAL_DATA_ ADDRESS	 reference type не відповідає специфікації; не вдалося відкрити файл для запису
	MODBUS_SLAVE_DEVICE_ FAILURE	 запитуваний файл відсутній; запитуваний файл доступний тільки для читання; не вдалося записати необхідну кількість байт

6.5.3 Робота за протоколом MQTT

Архітектура MQTT визначає три типи пристроїв у мережі:

- **брокер** пристрій (зазвичай ПК із серверним ПЗ), який здійснює передавання повідомлень від видавців до передплатників;
- видавці пристрої, які є джерелами даних для передплатників;
- підписники пристрої, які отримують дані від видавців.

Один пристрій може поєднувати функції видавця і підписника.

Рисунок 6.2 – Структурна схема обміну за протоколом MQTT

Підписка і публікація даних відбувається в рамках топіків. Топік являє собою символьний рядок з кодуванням UTF-8, який дає змогу однозначно ідентифікувати певний параметр. Топіки складаються з рівнів, розділених символом «/».

ПРИМІТКА

Топіки MQTT можуть містити заповнювачі – спеціальні символи, які обробляються брокером особливим чином. Існує два типи заповнювачів: однорівневий заповнювач «+» і багаторівневий заповнювач «#».

ПОПЕРЕДЖЕННЯ

Топіки є чутливими до регістра.

Структура топіків модулів: Серія/Ім'я_пристрою/Функція/Ім'я_вузла/Параметр, де:

- Серія найменування серії пристрою, завжди має значення FX210;
- Ім'я_пристрою ім'я конкретного модуля, задане в ПЗ AQteck Tool Max (див. розділ 7.5);
- **Функція** GET (читання значень входів або виходів модуля) або SET (запис значень виходів модуля);
- Ім'я_вузла тип входів або виходів (DI/DO/AI/AO);
- Параметр назва конкретного параметра (див. таблицю 6.15).

Таблиця 6.15 – Рівні топіків модуля

Серія	Ім'я пристрою	Функція	Ім'я вузла	Параметр	Опис	Формат значення
FX210	Device	SET	DO	MASK	Бітова маска дискретних виходів	Цілочисельний
		GET	DO	STATE	Бітова маска дискретних виходів	Цілочисельний

Приклад

1. Отримання значення дискретних входів

FX210/Device/GET/DI/MASK

Приклад отриманого значення: 15 (замкнуті входи 1-4)

2. Установлення значень дискретних виходів

FX210/Device/SET/DO/MASK

Приклад записаного значення: 7 (замкнуті виходи 1-3)

3. Використання однорівневого заповнювача

FX210/Device/GET/+*/COUNTER* – буде отримана інформація про стан лічильників усіх дискретних входів модуля, тобто цей топік еквівалентний набору топіків:

FX210/Device/GET/DI1/COUNTER ... FX210/Device/GET/DIn/COUNTER

4. Використання багаторівневого заповнювача

FX210/Device/GET/# – буде отримана інформація про всі параметри модуля, що доступні для читання (GET), тобто цей топік еквівалентний набору топіків:

FX210/Device/GET/DI/MASK,

FX210/Device/GET/DI1/COUNTER ... FX210/Device/GET/DIn/COUNTER

ПРИМІТКА

i

*У вказаних вище прикладах «*Device*» – назва пристрою, вказана при налаштуванні параметрів обміну (див. розділ 7.3).

Більш детальну інформацію про принципи обміну за протоколом MQTT можна отримати на офіційному ресурсі mqtt.org.

6.5.4 Робота за протоколом SNMP

Протокол заснований на архітектурі «Клієнт/Сервер», при цьому в термінології протоколу клієнти називаються менеджерами, а сервери – агентами.

Менеджери можуть здійснювати читання (GET) і запис (SET) параметрів агентів. Агенти можуть надсилати менеджерам повідомлення-пастки (TRAP) у разі переходу обладнання в аварійний стан або зміни стану входу.

Кожен параметр агента має унікальний ідентифікатор (OID), що являє собою послідовність цифр, розділених крапками. Для спрощення налаштування обміну виробники пристроїв-агентів зазвичай надають MIB-файли, які містять у собі список параметрів пристрою з їхніми назвами та ідентифікаторами. Ці файли можуть бути імпортовані в SNMP-менеджер.

Рисунок 6.3 – Структурна схема обміну за протоколом SNMP

6.6 Режими роботи дискретних виходів

Кожен дискретний вихід може працювати в одному з таких режимів:

- перемикання логічного сигналу;
- генерація ШІМ-сигналу.

Змінити режим роботи виходу можливо такими способами:

- за допомогою застосунку AQteck Tool Max;
- записом значень у відповідні Modbus-регістри (див. таблицю 6.5).

6.7 Безпечний стан вихідних елементів

Для кожного виходу можливе встановлення безпечного стану у вигляді коефіцієнта заповнення ШІМ.

Вихід переходить у безпечний стан, якщо протягом часу тайм-ауту відсутні команди від Майстра мережі. На виході модуля встановлюється значення параметра **Безпечний стан** у відсотках (від 0 до 100 %).

Тайм-аут переходу в безпечний стан задається користувачем.

i

ПРИМІТКА

Таймер переходу у безпечний стан оновлюється при кожному вдалому отриманні пакета по протоколу Modbus. Якщо в ролі Майстра мережі використовується хмарний сервіс, MQTT брокер або SNMP-менеджер, параметр **Тайм-аут переходу в безпечний стан** слід встановити рівним 0 (перехід у безпечний стан вимкнено).

Під час увімкнення модуль переведе усі виходи в безпечний стан і перебуватиме в ньому до отримання команди від Майстра мережі на керування реле (зміна бітової маски, зміна періоду та коефіцієнта заповнення ШІМ).

Для вимкнення функції переходу в безпечний стан слід установити параметр **Тайм-аут переходу в безпечний стан** рівним **0**.

ПРИМІТКА

Заводське налаштування параметра Тайм-аут переходу в безпечний стан дорівнює 30 секунд.

7 Налаштування

7.1 Підключення до ПЗ «AQteck Tool Max»

Пристрій налаштовується в ПЗ **AQteck Tool Max**. Застосунок розповсюджується безкоштовно та доступний для завантаження на сайті aqteck.ua.

Пристрій можна підключити до ПК за допомогою таких інтерфейсів:

- USB (рознімач USB Type-C);
- Ethernet.

ПОПЕРЕДЖЕННЯ

У разі під'єднання пристрою до порту USB подача основного живлення пристрою не потрібна. Живлення пристрою здійснюється від порту USB, виходи модуля та Ethernet при цьому не функціонують.

У разі підключення через інтерфейс Ethernet слід подати основне живлення на пристрій.

Для вибору інтерфейсу слід:

- 1. Підключити пристрій до ПК за допомогою кабелю USB або за інтерфейсом Ethernet.
- 2. Відкрити ПЗ **AQteck Tool Max**.
- 3. Вибрати Додати пристрої.
- 4. У випадному меню Протокол вибрати AqAutoDetectionProtocol.

Рисунок 7.1 – Меню вибору протоколу

5. У випадному меню Інтерфейс вибрати:

Ethernet (або іншу мережеву карту, до якої під'єднаний пристрій) – для підключення по Ethernet. STMicroelectronics Virtual COM Port – для підключення по USB.

Рисунок 7.2 – Меню вибору інтерфейсу

- 6. Для підключення по Ethernet: Ввести IP-адресу підключеного пристрою.
- 7. Для підключення по USB: Вказати адресу пристрою 1 (інші налаштування значення не мають).

ПОПЕРЕДЖЕННЯ

Значення ІР-адреси за умовчанням (заводське налаштування) – 192.168.1.99.

 Натиснути вкладку Знайти. У вікні відобразиться пристрій із зазначеною адресою. Вибрати пристрій (позначити галочкою) і натиснути **ОК**. Якщо пристрій захищено паролем, то слід ввести коректний пароль. Пристрій буде додано до проєкту.

Детальнішу інформацію про підключення і роботу з пристроєм наведено в Довідці ПЗ AQteck Tool Max.

7.2 Налаштування мережевих параметрів

Для обміну даними з модулем в мережі Ethernet мають бути задані параметри, наведені в таблиці 7.1.

Параметр	Примітка
МАС-адреса	Встановлюється на заводі-виробнику і є незмінною. Вказана на корпусі пристрою
IP-адреса	Може бути статичною або динамічною.
	Заводське налаштування – 192.168.1.99
Маска IP-адреси	Задає видиму модулем підмережу ІР-адрес інших пристроїв.
	Заводське налаштування – 255.255.0.0
IP-адреса шлюзу	Задає адресу шлюзу для виходу в Інтернет.
	Заводське налаштування – 192.168.1.1

Таблиця 7.1 – Мережеві параметри модуля

IP-адреса може бути:

- статичною;
- динамічною.

Для встановлення статичної IP-адреси за допомогою ПЗ AQteck Tool Max слід:

- 1. Зайти у розділ Мережеві налаштування.
- 2. Задати значення в полі Встановити ІР адресу.
- 3. Задати значення в полі Встановити маску підмережі.
- 4. Задати значення в полі Встановити ІР адресу шлюзу.

У разі статичної IP-адреси параметр **Режим DHCP** повинен мати значення **Вимкнено**.

Динамічна IP-адреса використовується для роботи з хмарним сервісом і не передбачає роботу з Майстром мережі Modbus TCP. IP-адреса модуля встановлюється DHCP-сервером мережі Ethernet.

і Спід уточни

Слід уточнити у служб системного адміністрування про наявність DHCP-сервера в ділянці мережі, до якої під'єднано модуль. Для використання динамічної IP-адреси слід встановити значення **Вкл** у параметрі **Режим DHCP**.

ПОПЕРЕДЖЕННЯ

Для застосування нових мережевих налаштувань слід перезавантажити модуль. Якщо модуль під'єднано через USB, його також слід вимкнути. Також перезавантажити пристрій можливо за допомогою функції «Перезавантажити пристрій» в застосунку ПЗ **AQteck Tool Max**.

7.3 Налаштування параметрів обміну за протоколом MQTT

Модуль підтримує протокол MQTT (версія 3.1.1) і може використовуватися в ролі клієнта. Модуль публікує повідомлення про стан своїх входів і підписаний на топіки, у межах яких здійснюється керування його виходами.

Параметри обміну по MQTT налаштовуються в ПЗ AQteck Tool Max.

M	2Π	
	Підключення до брокера	Відкл. 🔫
	Логін	
	Пароль	
	Ім'я пристрою	Device
	Адреса брокера	
	Порт	1883
	Зберігання останнього повідомлення	Відкл. 👻
	Інтервал публикації	10
	Якість обслуговування	QoS0 🔫
	Інтервал Keep Alive	0
\sim	Повідомлення про присутність	
	Включити	Відкл. 🝷
	Статус	Відключено

Рисунок 7.3 – Параметри обміну за протоколом MQTT

Таблиця 7.2 – Параметри обміну за протоколом MQTT

Параметр	Опис
Повідомлення про присутність	Якщо параметр має значення Увімкнено , то в момент увімкнення модуль публікує повідомлення «Online» у топік FX210/Iм'я_пристрою/MQTTstatus Якщо від модуля не надходить повідомлень, брокер публікує в цей топік повідомлення «Offline»
Підключення до брокера	Для роботи з модулем за протоколом MQTT слід встановити значення Вкл.
Логін Пароль	Використовуються для аутентифікації пристрою на стороні брокера. Якщо значення параметрів не задано, то аутентифікація не використовується
Ім'я пристрою	Ім'я пристрою. Входить до складу топіка
Адреса брокера	IP або URL брокера. Якщо брокер розташований у зовнішній мережі, то слід встановити для параметрів Шлюз і DNS (вкладка Мережеві налаштування) коректні значення
Порт	Порт брокера
Зберігання останнього повідомлення	Якщо встановлено значення Увімкнено , то інші клієнти, підписані на топіки модуля, отримають останні повідомлення з цих топіків
Інтервал публікації	Інтервал публікації даних (у секундах)
Якість обслуговування	Обраний рівень якості обслуговування. QoS 0 – передача повідомлень здійснюється без гарантії доставки. QoS 1 – передача повідомлень здійснюється з гарантією доставки, але допускається дублювання повідомлень (тобто одне й те саме повідомлення буде розіслано передплатникам кілька разів). QoS 2 – передача повідомлень здійснюється з гарантією доставки і з гарантією відсутності дублювання повідомлень
Інтервал Кеер Alive (у секундах)	Якщо протягом проміжку часу, що дорівнює півтора значенням цього параметра, брокер не отримує повідомлень від модуля, то з'єднання буде розірвано. 0 – параметр не використовується (за відсутності повідомлень з'єднання ніколи не буде розірвано)
Статус	Статус підключення до брокера

ПРИМІТКА

i

Під час використання протоколу MQTT запис параметрів зазвичай є подійним, а не циклічним. Рекомендується задати параметр **Тайм-аут переходу в безпечний стан** (вкладка **Modbus Slave**) рівним 0.

7.4 Налаштування параметрів обміну за протоколом SNMP

Модуль підтримує протокол SNMP (версії SNMPv1 і SNMPv2c) і може бути використаний в ролі агента. Модуль підтримує запити GET і SET. Модуль з дискретними входами надсилає пастки з бітовою маскою входів у разі зміни значення будь-якого входу.

За протоколом SNMP доступні всі параметри модуля. Список OID параметрів наведено в Настанові щодо експлуатування на конкретний модуль. МІВ-файл модуля доступний на його сторінці на сайті aqteck.ua.

\times	SNMP		
	Включення/Відключення	Відключено	•
	Повідомлення для читання	public	
	Повідомлення для запису	private	
	IP адреса для пастки	10.2.4.78	
	Номер порту для пастки	162	
	Версія SNMP	SNMPv1	-

Параметри обміну по SNMP налаштовуються в ПЗ AQteck Tool Max.

Рисунок 7.4 -	Параметри обм	іну за SNMP
---------------	---------------	-------------

Таблиця 7.3 – Параметри обміну по SNMP

Параметр	Опис
Увімкнення/Вимкнення	Для роботи модуля за протоколом SNMP потрібно встановити значення Увімкнено
Спільнота для читання	Пароль, який використовується для читання даних модуля
Спільнота для запису	Пароль, який використовується для запису даних у модуль
IP адреса для пастки	IP-адреса, на яку буде надіслана пастка у разі зміни маски дискретних входів модуля (тільки для модулів із дискретними входами)
Номер порту для пастки	Номер порту, на який буде відправлена пастка
Версія SNMP	Версія протоколу, що використовується модулем (SNMPv1 або SNMPv2)

і ПРИМІТКА

Під час використання протоколу SNMP без запитів читання (**GET**) запис параметрів зазвичай є подієвим, а не циклічним. Рекомендується задати параметр **Тайм-аут переходу в безпечний стан** (вкладка **Modbus Slave**) рівним **0**.

7.5 Пароль доступу до модуля

Для обмеження доступу до читання і запису параметрів конфігурації та для доступу в хмарний сервіс **Cloud** використовується пароль.

Встановити або змінити пароль можна за допомогою ПЗ AQteck Tool Max.

У разі втрати пароля слід відновити заводські налаштування.

За умовчанням пароль не задано.

7.6 Оновлення вбудованого ПЗ

Вбудоване ПЗ модуля оновлюється за допомогою інтерфейсів:

- USB;
- Ethernet (рекомендується).

Для оновлення вбудованого ПЗ за інтерфейсом USB слід:

- 1. У момент увімкнення живлення модуля натиснути й утримувати сервісну кнопку. Модуль перейде в режим завантажувача (індикатор «Аварія» світиться червоним).
- 2. Оновити ПЗ за допомогою спеціальної утиліти, яка доступна на сторінці пристрою на сайті aqteck.ua.

Для оновлення вбудованого ПЗ через інтерфейс Ethernet слід:

- 1. У програмі AQteck Tool Max вибрати меню Оновлення ПЗ.
- 2. Виконувати вказівки програми (файл вбудованого ПЗ розміщено на сайті aqteck.ua на сторінці модуля в розділі документації та ПЗ).
- 3. Перезавантажити модуль.

Під час оновлення через інтерфейс Ethernet перевіряється цілісність файлу вбудованого ПЗ і контрольної суми.

ПОПЕРЕДЖЕННЯ

Для завершення оновлення вбудованого ПЗ слід перезавантажити модуль. Якщо модуль під'єднано через USB, його також слід вимкнути

7.7 Налаштування годинника реального часу

Значення годинника реального часу (RTC) можна встановити або зчитати з пристрою через регістри Modbus, а також за допомогою ПЗ **AQteck Tool Max** (див. довідку до **AQteck Tool Max**, розділ **Налаш-тування годинника**).

Для встановлення нового часу через pericтри Modbus слід:

- 1. Записати значення часу у відповідні регістри.
- 2. Встановити на час не менше 1 секунди значення 1 у регістрі оновлення поточного часу.
- 3. Записати в регістр оновлення поточного часу значення 0.

Наступний запис поточного часу можна виконати через 1 секунду.

Якщо необхідно, то можна синхронізувати годинник модуля з віддаленим NTP-сервером.

NT	р	
	Включення/Відключення	Відключено 🔻
	Пул NTP серверів	pool.ntp.org
	NTP сервер 1	192.168.1.1
	NTP сервер 2	192.168.1.2
	Період синхронізації	5
	Статус	Відключено

Рисунок 7.8 – Параметри NTP

Таблиця 7.4 – Параметри NTP

Параметр	Опис
Увімкнення/Вимкнення	Для увімкнення режиму синхронізації часу слід установити значення Увімкнено
Пул NTP серверів	IP або URL використовуваного пулу NTP-серверів, що використовується
NTP сервер 1	IP основного NTP-сервера
NTP сервер 2	IP резервного NTP-сервера
Період синхронізації	Період синхронізації часу в секундах. Слід переконатися, що встановлене значення не перевищує мінімально можливого значення для конкретного NTP-сервера
Статус	Статус підключення до сервера

ПРИМІТКА

Якщо NTP-сервер розташований у зовнішній мережі, то слід встановити коректні значення для параметрів **Шлюз** і **DNS** (вкладка **Мережеві налаштування**).

ПРИМІТКА

Часовий пояс пристрою вибирається на вкладці Годинники реального часу.

ПРИМІТКА

Усі зазначені NTP-сервери (зокрема сервери з пулу) мають однаковий пріоритет під час опитування.

УВАГА

Після відновлення заводських налаштувань усі раніше встановлені налаштування, крім мережевих, буде видалено.

7.8 Відновлення заводських налаштувань

Для відновлення заводських налаштувань і скидання встановленого пароля слід:

- 1. Увімкнути живлення пристрою.
- 2. Натиснути й утримувати сервісну кнопку понад 12 секунд.

Після відпускання кнопки пристрій перезавантажиться і працюватиме з налаштуваннями за умовчанням.

8 Технічне обслуговування

8.1 Загальні вказівки

Під час виконання робіт з технічного обслуговування пристрою слід дотримуватися вимог безпеки з розділу 3.

Технічне обслуговування пристрою проводиться не рідше одного разу на 6 місяців і складається з таких процедур:

- перевірка кріплення пристрою;
- перевірка гвинтових з'єднань;
- видалення пилу і бруду з клемників пристрою.

8.2 Батарея

У пристрої використовується змінна батарея типу CR2032. Батарея призначена для живлення годинника реального часу.

Якщо заряд батареї опускається нижче 2 В, то індикатор **Аварія** засвічується на 100 мс один раз на дві секунди. Таке світіння індикатора сигналізує про необхідність заміни батареї.

Якщо напруга батареї годинника реального часу менша за 1,6 В, то запис конфігураційних параметрів виконується у флеш-пам'ять модуля.

Порядок запису конфігураційних параметрів при розрядженій батареї:

- 1. Нові значення конфігураційних параметрів записуються в батарейний ОЗП близько 5 секунд.
- 2. З батарейного ОЗП значення конфігураційних параметрів переносяться у флеш-пам'ять і запускається тайм-аут щонайменше 2 хвилини (залежно від навантаження на модуль).

-	
_	

ПРИМІТКА

Стан батареї оновлюється після подачі живлення або кожні 12 годин з моменту подачі живлення.

ПОПЕРЕДЖЕННЯ

Не рекомендується виконувати циклічний запис конфігураційних параметрів у разі розрядження батареї. Ресурс флеш-пам'яті обмежений.

Для заміни батареї рекомендується звернутися до технічної підтримки компанії АКУТЕК за отриманням консультації або скористатися послугами сервісного центру.

9 Комплектність

Найменування	Кількість
Модуль	1 шт.
Паспорт та гарантійний талон	1 прим.
Коротка настанова	1 прим.
Комутаційний кабель UTP 5е 150 мм	1 шт.
Клема живлення 2EDGKN-5.08-08P	1 шт.
Клема живлення 2EDGKN-5.08-02P	2 шт. (для FO210-8R) 4 шт. (для FO210-16R)
Заглушка рознімача Ethernet	1 шт.
Заглушка рознімача USB	1 шт.

i

ПРИМІТКА Виробник залишає за собою право внесення доповнень до комплектності модуля.

ПРИМІТКА

За необхідності можливе постачання модуля з гвинтовими відповідними частинами. За детальною інформацію звертатися до відділу продажу компанії.

10 Маркування

На корпус пристрою нанесені:

- товарний знак підприємства-виробника;
- умовне позначення пристрою;
- знак відповідності технічним регламентам;
- клас захисту від ураження електричним струмом за ДСТУ EN 61140;
- ступінь захисту корпусу за ДСТУ EN 60529;
- рід струму живлення, діапазон напруг живлення;
- номінальна споживана потужність;
- заводський номер пристрою і рік випуску;
- МАС-адреса;
- інформація щодо підключення зовнішніх пристроїв.

На споживчу тару нанесено:

- найменування пристрою;
- знак відповідності технічним регламентам;
- заводський номер пристрою;
- дата пакування.

11 Пакування

Пакування пристрою проводиться відповідно до ДСТУ 8281 в індивідуальну споживчу тару, що виготовлена з гофрованого картону. Перед укладанням в індивідуальну споживчу тару кожен пристрій потрібно спакувати в пакет із поліетиленової плівки.

Опаковання пристрою має відповідати документації підприємства-виробника і забезпечувати збереження пристрою під час зберігання і транспортування.

Допускається використання іншого виду пакування за погодженням із Замовником.

12 Транспортування та зберігання

Пристрій повинен транспортуватися в закритому транспорті будь-якого виду. У транспортних засобах тара повинна кріпитися згідно з правилами, що діють на відповідних видах транспорту.

Транспортування пристроїв повинно здійснюватися за температури навколишнього повітря від мінус 25 до плюс 55 °C із дотриманням заходів захисту від ударів і вібрацій.

Пристрій треба перевозити в транспортній тарі поштучно або в контейнерах.

Пристрої повинні зберігатися в тарі виробника за температури навколишнього повітря від 5 до 40 °С в опалювальних сховищах. У повітрі не повинні бути присутніми агресивні домішки.

Пристрої треба зберігати на стелажах.

Додаток А. Розрахунок вектора ініціалізації для шифрування файлу архіву

Для розшифрування файлу архіву як вектор ініціалізації слід використовувати хеш-функцію. Хеш-функція має повертати 8 байт (тип long long).

Приклад реалізації хеш-функції мовою програмування С:

```
typedef union {
    struct {
        unsigned long lo;
        unsigned long hi;
    };
    long hilo;
}LONG LONG;
long Hash8(const char *str) {// Ha основі Rot13
    LONG LONG temp;
    temp.lo = 0;
    temp.hi = 0;
    for ( ; *str; ) {
        temp.lo += (unsigned char) (*str);
        temp.lo -= (temp.lo << 13) | (temp.lo >> 19);
        str++;
        if (!str)
             break;
        temp.hi += (unsigned char) (*str);
        temp.hi -= (temp.hi << 13) | (temp.hi >> 19);
        str++;
    }
    return temp.hilo;
}
```


61153, м. Харків, вул. Гвардійців Широнінців, ЗА тел.: (057) 720-91-19, 0-800-21-01-96 (багатоканальний) тех. підтримка: support@aqteck.ua відділ продажу: sales@aqteck.ua aqteck.ua

реєстр.: 2-UK-1170-1.2